메뉴 건너뛰기




Volumn 180, Issue 24, 2010, Pages 4737-4762

A class of fuzzy clusterwise regression models

Author keywords

Cluster validity; Fuzzy clusterwise linear regression analysis; Fuzzy clusterwise polynomial regression analysis; Goodness of fit; LR fuzzy dependent variable

Indexed keywords

CLUSTER VALIDITY; CLUSTERING MODEL; CLUSTERWISE REGRESSION; DATA SETS; DEPENDENT VARIABLES; EXPLANATORY VARIABLES; FUZZY CLUSTERWISE POLYNOMIAL REGRESSION ANALYSIS; FUZZY REGRESSIONS; GOODNESS OF FIT; HOMOGENEOUS CLUSTER; LINEAR REGRESSION MODELS; MEMBERSHIP DEGREES; NUMBER OF CLUSTERS; POLYNOMIAL REGRESSION MODELS; REGRESSION MODEL; REGRESSION PARAMETERS; SINGLE OBJECTIVE;

EID: 77957682701     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2010.08.018     Document Type: Article
Times cited : (34)

References (63)
  • 1
    • 0000417176 scopus 로고
    • Mixture models, outliers and the em algorithm
    • M. Aitkin, and G.T. Wilson Mixture models, outliers and the EM algorithm Technometrics 22 1980 325 331
    • (1980) Technometrics , vol.22 , pp. 325-331
    • Aitkin, M.1    Wilson, G.T.2
  • 2
    • 0037375122 scopus 로고    scopus 로고
    • Predicting business ethical tolerance in international markets: A concomitant clusterwise regression analysis
    • J.M. Aurifeille, and P.G. Quester Predicting business ethical tolerance in international markets: a concomitant clusterwise regression analysis International Business Review 12 2003 253 272
    • (2003) International Business Review , vol.12 , pp. 253-272
    • Aurifeille, J.M.1    Quester, P.G.2
  • 3
    • 0015644823 scopus 로고
    • Cluster validity with fuzzy sets
    • J.C. Bezdek Cluster validity with fuzzy sets Journal of Cybernetics 3 1974 58 73
    • (1974) Journal of Cybernetics , vol.3 , pp. 58-73
    • Bezdek, J.C.1
  • 5
    • 0001190023 scopus 로고
    • Least squares model fitting to fuzzy vector data
    • A. Celmins Least squares model fitting to fuzzy vector data Fuzzy Sets and Systems 22 1987 245 269
    • (1987) Fuzzy Sets and Systems , vol.22 , pp. 245-269
    • Celmins, A.1
  • 6
    • 71149087511 scopus 로고    scopus 로고
    • Modeling manufacturing processes using a genetic programming-based fuzzy regression with detection of outliers
    • K.Y. Chan, C.K. Kwong, and T.C. Fogarty Modeling manufacturing processes using a genetic programming-based fuzzy regression with detection of outliers Information Sciences 180 2010 506 518
    • (2010) Information Sciences , vol.180 , pp. 506-518
    • Chan, K.Y.1    Kwong, C.K.2    Fogarty, T.C.3
  • 7
    • 0000651556 scopus 로고    scopus 로고
    • Applying fuzzy linear regression to VDT legibility
    • P.-T. Chang, E.S. Lee, and S.A. Konz Applying fuzzy linear regression to VDT legibility Fuzzy Sets and Systems 80 1996 197 204
    • (1996) Fuzzy Sets and Systems , vol.80 , pp. 197-204
    • Chang, P.-T.1    Lee, E.S.2    Konz, S.A.3
  • 8
    • 0035313747 scopus 로고    scopus 로고
    • Fuzzy regression methods - A comparative assessment
    • Y.-H.O. Chang, and B.M. Ayyub Fuzzy regression methods - a comparative assessment Fuzzy Sets and Systems 119 2001 187 203
    • (2001) Fuzzy Sets and Systems , vol.119 , pp. 187-203
    • Chang, Y.-H.O.1    Ayyub, B.M.2
  • 9
    • 0035313778 scopus 로고    scopus 로고
    • Outliers detection and confidence interval modification in fuzzy regression
    • Y.S. Chen Outliers detection and confidence interval modification in fuzzy regression Fuzzy Sets and Systems 119 2001 259 272
    • (2001) Fuzzy Sets and Systems , vol.119 , pp. 259-272
    • Chen, Y.S.1
  • 10
    • 48749132540 scopus 로고    scopus 로고
    • A variable spread fuzzy linear regression model with higher explanatory power and forecasting accuracy
    • S.-P. Chen, and F. Dang Jr. A variable spread fuzzy linear regression model with higher explanatory power and forecasting accuracy Information Sciences 178 2008 3973 3988
    • (2008) Information Sciences , vol.178 , pp. 3973-3988
    • Chen, S.-P.1    Dang, Jr.F.2
  • 11
    • 35748960851 scopus 로고    scopus 로고
    • Extended support vector interval regression networks for interval input-output data
    • C.-C. Chuang Extended support vector interval regression networks for interval input-output data Information Sciences 178 2008 871 891
    • (2008) Information Sciences , vol.178 , pp. 871-891
    • Chuang, C.-C.1
  • 12
    • 0037892855 scopus 로고    scopus 로고
    • Fuzzy k-mean clustering models for triangular fuzzy time trajectories
    • R. Coppi, and P. D'Urso Fuzzy k-mean clustering models for triangular fuzzy time trajectories Statistical Methods and Applications 11 2002 21 24
    • (2002) Statistical Methods and Applications , vol.11 , pp. 21-24
    • Coppi, R.1    D'Urso, P.2
  • 13
    • 33748065155 scopus 로고    scopus 로고
    • Regression analysis with fuzzy informational paradigm: A least-squares approach using membership function information
    • R. Coppi, and P. D'Urso Regression analysis with fuzzy informational paradigm: a least-squares approach using membership function information International Journal of Pure and Applied Mathematics 8 3 2003 279 306
    • (2003) International Journal of Pure and Applied Mathematics , vol.8 , Issue.3 , pp. 279-306
    • Coppi, R.1    D'Urso, P.2
  • 15
    • 0037119257 scopus 로고    scopus 로고
    • An "orderwise" polynomial regression procedure for fuzzy data
    • P. D'Urso, and T. Gastaldi An "orderwise" polynomial regression procedure for fuzzy data Fuzzy Sets and Systems 130 1 2002 1 19
    • (2002) Fuzzy Sets and Systems , vol.130 , Issue.1 , pp. 1-19
    • D'Urso, P.1    Gastaldi, T.2
  • 16
    • 33748061677 scopus 로고    scopus 로고
    • Goodness of fit and variable selection in the fuzzy multiple linear regression
    • P. D'Urso, and A. Santoro Goodness of fit and variable selection in the fuzzy multiple linear regression Fuzzy Sets and Systems 157 2006 2627 2647
    • (2006) Fuzzy Sets and Systems , vol.157 , pp. 2627-2647
    • D'Urso, P.1    Santoro, A.2
  • 17
    • 33750291939 scopus 로고    scopus 로고
    • Fuzzy clusterwise linear regression analysis with symmetrical fuzzy output variable
    • P. D'Urso, and A. Santoro Fuzzy clusterwise linear regression analysis with symmetrical fuzzy output variable Computational Statistics and Data Analysis 51 2006 287 313
    • (2006) Computational Statistics and Data Analysis , vol.51 , pp. 287-313
    • D'Urso, P.1    Santoro, A.2
  • 18
    • 0037454064 scopus 로고    scopus 로고
    • Linear regression analysis for fuzzy/crisp input and fuzzy/crisp output data
    • P. D'Urso Linear regression analysis for fuzzy/crisp input and fuzzy/crisp output data Computational Statistics and Data Analysis 42 1-2 2003 47 72
    • (2003) Computational Statistics and Data Analysis , vol.42 , Issue.12 , pp. 47-72
    • D'Urso, P.1
  • 20
    • 0001237218 scopus 로고
    • A maximum likelihood methodology for clusterwise linear regression
    • W.S. De Sarbo, and W.L. Cron A maximum likelihood methodology for clusterwise linear regression Journal of Classification 5 2 1988 249 282
    • (1988) Journal of Classification , vol.5 , Issue.2 , pp. 249-282
    • De Sarbo, W.S.1    Cron, W.L.2
  • 21
    • 0001104737 scopus 로고
    • A simulated annealing methodology for clusterwise linear regression
    • W.S. De Sarbo, R.L. Oliver, and A. Rangaswamy A simulated annealing methodology for clusterwise linear regression Psychometrika 54 4 1989 707 736
    • (1989) Psychometrika , vol.54 , Issue.4 , pp. 707-736
    • De Sarbo, W.S.1    Oliver, R.L.2    Rangaswamy, A.3
  • 23
    • 0001697861 scopus 로고    scopus 로고
    • Fuzzy regression analysis
    • Fuzzy Sets in Decision Analysis
    • P. Diamond, and H. Tanaka Fuzzy regression analysis A. Slowinski, Fuzzy Sets in Decision Analysis Operations Research and Statistics 1998 Kluwer Academic Publishers USA, Massachusetts 349 387
    • (1998) Operations Research and Statistics , pp. 349-387
    • Diamond, P.1    Tanaka, H.2
  • 25
    • 0037293274 scopus 로고    scopus 로고
    • A clustering technique for the identification of piecewise affine systems
    • G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari A clustering technique for the identification of piecewise affine systems Automatica 39 2003 205 217
    • (2003) Automatica , vol.39 , pp. 205-217
    • Ferrari-Trecate, G.1    Muselli, M.2    Liberati, D.3    Morari, M.4
  • 31
    • 0034340248 scopus 로고    scopus 로고
    • Identifiability of models for clusterwise linear regression
    • C. Hennig Identifiability of models for clusterwise linear regression Journal of Classification 17 2000 273 296
    • (2000) Journal of Classification , vol.17 , pp. 273-296
    • Hennig, C.1
  • 32
    • 0038454627 scopus 로고    scopus 로고
    • Clusters, outliers, and regression: Fixed point clusters
    • C. Hennig Clusters, outliers, and regression: fixed point clusters Journal of Multivariate Analysis 86 2003 183 212
    • (2003) Journal of Multivariate Analysis , vol.86 , pp. 183-212
    • Hennig, C.1
  • 34
    • 0742285807 scopus 로고    scopus 로고
    • Ridge estimation for regression models with crisp inputs and Gaussian fuzzy output
    • D.H. Hong, C. Hwang, and C. Ahn Ridge estimation for regression models with crisp inputs and Gaussian fuzzy output Fuzzy Sets and Systems 142 2004 307 319
    • (2004) Fuzzy Sets and Systems , vol.142 , pp. 307-319
    • Hong, D.H.1    Hwang, C.2    Ahn, C.3
  • 35
    • 0036650138 scopus 로고    scopus 로고
    • Development of energy loss formula for distribution systems using FCN algorithm and cluster-wise fuzzy regression
    • Y.-Y. Hong, and Z.-T. Chao Development of energy loss formula for distribution systems using FCN algorithm and cluster-wise fuzzy regression IEEE Transactions on Power Delivery 17 3 2002 794 799
    • (2002) IEEE Transactions on Power Delivery , vol.17 , Issue.3 , pp. 794-799
    • Hong, Y.-Y.1    Chao, Z.-T.2
  • 36
    • 11244269512 scopus 로고    scopus 로고
    • Fuzzy clustering on LR-type fuzzy numbers with an application to Taiwanese tea evaluation
    • W.-L. Hung, and M.-S. Yang Fuzzy clustering on LR-type fuzzy numbers with an application to Taiwanese tea evaluation Fuzzy Sets and Systems 150 2005 561 577
    • (2005) Fuzzy Sets and Systems , vol.150 , pp. 561-577
    • Hung, W.-L.1    Yang, M.-S.2
  • 37
    • 33750348263 scopus 로고    scopus 로고
    • An omission approach for detecting outliers in fuzzy regression models
    • W.-L. Hung, and M.-S. Yang An omission approach for detecting outliers in fuzzy regression models Fuzzy Sets and Systems 157 2006 3109 3122
    • (2006) Fuzzy Sets and Systems , vol.157 , pp. 3109-3122
    • Hung, W.-L.1    Yang, M.-S.2
  • 38
    • 39049162430 scopus 로고    scopus 로고
    • A new hybrid artificial neural networks and fuzzy regression model for time series forecasting
    • M. Khashei, S.R. Hejazi, and M. Bijari A new hybrid artificial neural networks and fuzzy regression model for time series forecasting Fuzzy Sets and Systems 159 2008 769 786
    • (2008) Fuzzy Sets and Systems , vol.159 , pp. 769-786
    • Khashei, M.1    Hejazi, S.R.2    Bijari, M.3
  • 39
    • 35349010541 scopus 로고    scopus 로고
    • Asymptotic properties of least squares estimation with fuzzy observations
    • H.K. Kim, J.H. Yoon, and Y. Li Asymptotic properties of least squares estimation with fuzzy observations Information Sciences 178 2008 439 451
    • (2008) Information Sciences , vol.178 , pp. 439-451
    • Kim, H.K.1    Yoon, J.H.2    Li, Y.3
  • 40
    • 0032686966 scopus 로고    scopus 로고
    • A mathematical programming approach to clusterwise regression model and its extensions
    • K. Lau, P. Leung, and K. Tse A mathematical programming approach to clusterwise regression model and its extensions European Journal of Operational Research 111 1999 640 652
    • (1999) European Journal of Operational Research , vol.111 , pp. 640-652
    • Lau, K.1    Leung, P.2    Tse, K.3
  • 42
    • 67349184460 scopus 로고    scopus 로고
    • T-S fuzzy model identification based on a novel fuzzy c-regression model clustering algorithm
    • C. Li, J. Zhou, X. Xiang, Q. Li, and X. An T-S fuzzy model identification based on a novel fuzzy c-regression model clustering algorithm Engineering Applications of Artificial Intelligence 22 2009 646 653
    • (2009) Engineering Applications of Artificial Intelligence , vol.22 , pp. 646-653
    • Li, C.1    Zhou, J.2    Xiang, X.3    Li, Q.4    An, X.5
  • 44
    • 77957672053 scopus 로고    scopus 로고
    • Piecewise-linear approximation of nonlinear models based on probabilistically/possibilistically interpreted intervals' numbers (INs)
    • S.E. Papadakis, and V.G. Kaburlasos Piecewise-linear approximation of nonlinear models based on probabilistically/possibilistically interpreted intervals' numbers (INs) Information Sciences 180 2010 5060 5076
    • (2010) Information Sciences , vol.180 , pp. 5060-5076
    • Papadakis, S.E.1    Kaburlasos, V.G.2
  • 47
    • 84950321853 scopus 로고
    • Estimating mixtures of normal distributions and switching regressions (with discussion)
    • R.E. Quandt, and J.B. Ramsey Estimating mixtures of normal distributions and switching regressions (with discussion) Journal of the American Statistical Association 73 1978 730 752
    • (1978) Journal of the American Statistical Association , vol.73 , pp. 730-752
    • Quandt, R.E.1    Ramsey, J.B.2
  • 48
    • 0000065508 scopus 로고    scopus 로고
    • Ranking alternatives with fuzzy weights using maximizing set and minimizing set
    • P.A. Raj, and D.N. Kumar Ranking alternatives with fuzzy weights using maximizing set and minimizing set Fuzzy Sets and Systems 105 1999 365 375
    • (1999) Fuzzy Sets and Systems , vol.105 , pp. 365-375
    • Raj, P.A.1    Kumar, D.N.2
  • 49
    • 0020157362 scopus 로고
    • Fuzzy clustering algorithm and their cluster validity
    • M. Roubens Fuzzy clustering algorithm and their cluster validity Eur. J. Oper. Res. 10 1982 294 331
    • (1982) Eur. J. Oper. Res. , vol.10 , pp. 294-331
    • Roubens, M.1
  • 50
    • 58549085743 scopus 로고    scopus 로고
    • A novel fuzzy linear regression model based on a non-equality possibility index and optimum uncertainty
    • H. Shakouri, and G.R. Nadimi A novel fuzzy linear regression model based on a non-equality possibility index and optimum uncertainty Appl. Soft Comput. 9 2009 590 598
    • (2009) Appl. Soft Comput. , vol.9 , pp. 590-598
    • Shakouri, H.1    Nadimi, G.R.2
  • 51
    • 24144475030 scopus 로고    scopus 로고
    • A consistent procedure for determining the number of clusters in regression clustering
    • Q. Shao, and Y. Wu A consistent procedure for determining the number of clusters in regression clustering J. Stat. Planning Inference 135 2005 461 476
    • (2005) J. Stat. Planning Inference , vol.135 , pp. 461-476
    • Shao, Q.1    Wu, Y.2
  • 52
    • 0000271839 scopus 로고
    • Clusterwise linear regression
    • H. Spath Clusterwise linear regression Computing 22 4 1979 367 373
    • (1979) Computing , vol.22 , Issue.4 , pp. 367-373
    • Spath, H.1
  • 53
    • 34250871625 scopus 로고    scopus 로고
    • Initializing K-means batch clustering, a critical evaluation of several techniques
    • D. Steinley, and M.J. Brusco Initializing K-means batch clustering, a critical evaluation of several techniques Journal of Classification 24 2007 99 121
    • (2007) Journal of Classification , vol.24 , pp. 99-121
    • Steinley, D.1    Brusco, M.J.2
  • 56
    • 34250710870 scopus 로고    scopus 로고
    • Fuzzy nonparametric regression based on local linear smoothing technique
    • N. Wang, W.-X. Zhang, and C.-L. Mei Fuzzy nonparametric regression based on local linear smoothing technique Information Sciences 177 2007 3882 3900
    • (2007) Information Sciences , vol.177 , pp. 3882-3900
    • Wang, N.1    Zhang, W.-X.2    Mei, C.-L.3
  • 57
    • 0001500587 scopus 로고
    • A clusterwise regression method for simultaneous fuzzy market structuring and benefit segmentation
    • M. Wedel, and J.B.E.M. Steenkamp A clusterwise regression method for simultaneous fuzzy market structuring and benefit segmentation Journal of Marketing Research 28 1991 385 396
    • (1991) Journal of Marketing Research , vol.28 , pp. 385-396
    • Wedel, M.1    Steenkamp, J.B.E.M.2
  • 59
    • 0035313797 scopus 로고    scopus 로고
    • Multidimensional least-squares fitting with a fuzzy model
    • R. Xu, and C. Li Multidimensional least-squares fitting with a fuzzy model Fuzzy Sets and Systems 119 2001 215 223
    • (2001) Fuzzy Sets and Systems , vol.119 , pp. 215-223
    • Xu, R.1    Li, C.2
  • 62
    • 70350129248 scopus 로고    scopus 로고
    • Piecewise regression for fuzzy input-output data with automatic change-point detection by quadratic programming
    • J.-R. Yu, and C.-W. Lee Piecewise regression for fuzzy input-output data with automatic change-point detection by quadratic programming Applied Soft Computing 10 2010 111 118
    • (2010) Applied Soft Computing , vol.10 , pp. 111-118
    • Yu, J.-R.1    Lee, C.-W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.