메뉴 건너뛰기




Volumn 74, Issue 1, 2011, Pages 81-93

Large time existence for 1D Green-Naghdi equations

Author keywords

Green Naghdi equations; Picard iterative scheme; Water waves

Indexed keywords

COASTAL OCEANOGRAPHY; COMMONLY USED; GREEN-NAGHDI; INITIAL CONDITIONS; ITERATIVE SCHEMES; LARGE AMPLITUDE;

EID: 77957682224     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.na.2010.08.019     Document Type: Article
Times cited : (82)

References (20)
  • 2
    • 85009585833 scopus 로고
    • Gravity waves on the free surface of an incompressible perfect fluid of finite depth
    • H. Yosihara Gravity waves on the free surface of an incompressible perfect fluid of finite depth Publ. Res. Inst. Math. Sci. 18 1 1982 49 96
    • (1982) Publ. Res. Inst. Math. Sci. , vol.18 , Issue.1 , pp. 49-96
    • Yosihara, H.1
  • 3
    • 0001688084 scopus 로고
    • An existence theory for water waves and the Boussinesq and the Kortewegde Vries scaling limits
    • W. Craig An existence theory for water waves and the Boussinesq and the Kortewegde Vries scaling limits Comm. Partial Differential Equations 10 1985 787 1003
    • (1985) Comm. Partial Differential Equations , vol.10 , pp. 787-1003
    • Craig, W.1
  • 4
    • 0031506263 scopus 로고    scopus 로고
    • Well-posedness in Sobolev spaces of the full water wave problem in 2-D
    • S. Wu Well-posedness in Sobolev spaces of the full water wave problem in 2-D Invent. Math. 130 1 1997 39 72
    • (1997) Invent. Math. , vol.130 , Issue.1 , pp. 39-72
    • Wu, S.1
  • 5
    • 0033446356 scopus 로고    scopus 로고
    • Well-posedness in Sobolev spaces of the full water wave problem in 3-D
    • S. Wu Well-posedness in Sobolev spaces of the full water wave problem in 3-D J. Amer. Math. Soc. 12 2 1999 445 495
    • (1999) J. Amer. Math. Soc. , vol.12 , Issue.2 , pp. 445-495
    • Wu, S.1
  • 6
    • 22544482964 scopus 로고    scopus 로고
    • Well-posedness of the water waves equations
    • D. Lannes Well-posedness of the water waves equations J. Amer. Math. Soc. 18 2005 605 654
    • (2005) J. Amer. Math. Soc. , vol.18 , pp. 605-654
    • Lannes, D.1
  • 7
    • 0016876595 scopus 로고
    • A derivation of equations for wave propagation in water of variable depth
    • A.E. Green, and P.M. Naghdi A derivation of equations for wave propagation in water of variable depth J. Fluid Mech. 78 1976 237 246
    • (1976) J. Fluid Mech. , vol.78 , pp. 237-246
    • Green, A.E.1    Naghdi, P.M.2
  • 10
    • 0029343414 scopus 로고
    • A fully nonlinear Boussinesq model for surface waves. I. Highly nonlinear unsteady waves
    • Ge Wei, James T. Kirby, Stephan T. Grilli, and Ravishankar Subramanya A fully nonlinear Boussinesq model for surface waves. I. Highly nonlinear unsteady waves J. Fluid Mech. 294 1995 71 92
    • (1995) J. Fluid Mech. , vol.294 , pp. 71-92
    • Wei, G.1    Kirby, J.T.2    Grilli, S.T.3    Subramanya, R.4
  • 12
    • 59649093678 scopus 로고    scopus 로고
    • Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation
    • D. Lannes, and P. Bonneton Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation Phys. Fluids 21 2009
    • (2009) Phys. Fluids , vol.21
    • Lannes, D.1    Bonneton, P.2
  • 13
    • 38349102793 scopus 로고    scopus 로고
    • Large time existence for 3D water-waves and asymptotics
    • B. Alvarez-Samaniego, and D. Lannes Large time existence for 3D water-waves and asymptotics Invent. Math. 171 2008 485 541
    • (2008) Invent. Math. , vol.171 , pp. 485-541
    • Alvarez-Samaniego, B.1    Lannes, D.2
  • 14
    • 0037055049 scopus 로고    scopus 로고
    • A new Boussinesq method for fully nonlinear waves from shallow to deep water
    • P.A. Madsen, H.B. Bingham, and H. Liu A new Boussinesq method for fully nonlinear waves from shallow to deep water J. Fluid Mech. 462 2002 1 30
    • (2002) J. Fluid Mech. , vol.462 , pp. 1-30
    • Madsen, P.A.1    Bingham, H.B.2    Liu, H.3
  • 15
    • 33746393705 scopus 로고    scopus 로고
    • A shallow-water approximation to the full water wave problem
    • Y.A. Li A shallow-water approximation to the full water wave problem Comm. Pure Appl. Math. 59 2006 1225 1285
    • (2006) Comm. Pure Appl. Math. , vol.59 , pp. 1225-1285
    • Li, Y.A.1
  • 16
    • 42549163819 scopus 로고    scopus 로고
    • A NashMoser theorem for singular evolution equations. Application to the Serre and GreenNaghdi equations
    • B. Alvarez-Samaniego, and D. Lannes A NashMoser theorem for singular evolution equations. Application to the Serre and GreenNaghdi equations Indiana Univ. Math. J. 57 2008 97 131
    • (2008) Indiana Univ. Math. J. , vol.57 , pp. 97-131
    • Alvarez-Samaniego, B.1    Lannes, D.2
  • 17
    • 77950199859 scopus 로고    scopus 로고
    • Variable depth KDV equations and generalizations to more nonlinear regimes
    • S. Israwi, Variable depth KDV equations and generalizations to more nonlinear regimes, ESAIM: Journal of M2AN (2010). arXiv:0901.3201v1.
    • (2010) ESAIM: Journal of M2AN
    • Israwi, S.1
  • 18
    • 0004157168 scopus 로고
    • Opérateurs Pseudo-Différentiels et Théorème de Nash-Moser
    • InterEditions, Paris, Editions du Centre National de la Recherche Scientifique, CNRS, Meudon
    • S. Alinhac, P. Grard, Oprateurs Pseudo-Diffrentiels et Thorme de NashMoser, Savoirs Actuels. InterEditions, Paris, Editions du Centre National de la Recherche Scientifique, CNRS, Meudon, 1991, 190 pp.
    • (1991) Savoirs Actuels
    • Alinhac, S.1
  • 20
    • 0003278083 scopus 로고    scopus 로고
    • Partial Differential Equations II
    • Springer
    • Michael E. Taylor, Partial Differential Equations II, in: Applied Mathematical Sciences, vol. 116, Springer, 1997.
    • (1997) Applied Mathematical Sciences , vol.116
    • Taylor, M.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.