메뉴 건너뛰기




Volumn 82, Issue 9, 2010, Pages

Magnetic-field control of the electric polarization in BiMnO3

Author keywords

[No Author keywords available]

Indexed keywords


EID: 77957585640     PISSN: 10980121     EISSN: 1550235X     Source Type: Journal    
DOI: 10.1103/PhysRevB.82.094425     Document Type: Article
Times cited : (53)

References (19)
  • 1
    • 67650729463 scopus 로고    scopus 로고
    • 10.1103/Physics.2.20
    • D. Khomskii, Physics 2, 20 (2009). 10.1103/Physics.2.20
    • (2009) Physics , vol.2 , pp. 20
    • Khomskii, D.1
  • 5
    • 47349131109 scopus 로고    scopus 로고
    • 10.1088/1367-2630/10/7/073021
    • I. V. Solovyev and Z. V. Pchelkina, New J. Phys. 10, 073021 (2008). 10.1088/1367-2630/10/7/073021
    • (2008) New J. Phys. , vol.10 , pp. 073021
    • Solovyev, I.V.1    Pchelkina, Z.V.2
  • 9
    • 12044256522 scopus 로고
    • 10.1103/RevModPhys.66.899
    • R. Resta, Rev. Mod. Phys. 66, 899 (1994). 10.1103/RevModPhys.66.899
    • (1994) Rev. Mod. Phys. , vol.66 , pp. 899
    • Resta, R.1
  • 10
    • 77949406339 scopus 로고    scopus 로고
    • 10.1088/0953-8984/22/12/123201
    • R. Resta, J. Phys.: Condens. Matter 22, 123201 (2010). 10.1088/0953-8984/22/12/123201
    • (2010) J. Phys.: Condens. Matter , vol.22 , pp. 123201
    • Resta, R.1
  • 11
    • 47249132020 scopus 로고    scopus 로고
    • 10.1088/0953-8984/20/29/293201
    • I. V. Solovyev, J. Phys.: Condens. Matter 20, 293201 (2008). 10.1088/0953-8984/20/29/293201
    • (2008) J. Phys.: Condens. Matter , vol.20 , pp. 293201
    • Solovyev, I.V.1
  • 12
    • 67649086691 scopus 로고    scopus 로고
    • 10.1143/JPSJ.78.054710
    • I. Solovyev, J. Phys. Soc. Jpn. 78, 054710 (2009). 10.1143/JPSJ.78.054710
    • (2009) J. Phys. Soc. Jpn. , vol.78 , pp. 054710
    • Solovyev, I.1
  • 13
    • 77957559598 scopus 로고    scopus 로고
    • The interatomic magnetic interactions are defined as one half of the Hartree-Fock energy difference between antiferromagnetic and ferromagnetic configurations in each bond.
    • The interatomic magnetic interactions are defined as one half of the Hartree-Fock energy difference between antiferromagnetic and ferromagnetic configurations in each bond.
  • 14
    • 77957608537 scopus 로고    scopus 로고
    • We use the following setting for the monoclinic translations: R1,2 = 1 2 (sinβa,∓b,cosβa ) and R3 = (0,0,c ). The positions of four Mn atoms in the unit cell are specified by the vectors: τ1 = yMn ( R1 - R2 ) + 1 4 R3, τ2 =- τ1, τ3 = 1 2 R1, and τ4 = 1 2 ( R2 + R3 ). The experimental structure parameters were taken from Ref.. More detailed information about the settings, which were used for the crystal structure of BiMnO3, can be found in Refs..
    • We use the following setting for the monoclinic translations: R 1, 2 = 1 2 (sin β a, ∓ b, cos β a) and R 3 = (0, 0, c). The positions of four Mn atoms in the unit cell are specified by the vectors: τ 1 = y Mn (R 1 - R 2) + 1 4 R 3, τ 2 = - τ 1, τ 3 = 1 2 R 1, and τ 4 = 1 2 (R 2 + R 3). The experimental structure parameters were taken from Ref.. More detailed information about the settings, which were used for the crystal structure of BiMnO 3, can be found in Refs..
  • 16
    • 77957565763 scopus 로고    scopus 로고
    • ) WRτ (r). Then, the matrix elements 〈 WRτ | r-R-τ | WRτ 〉of P in the basis of { WRτ } will either vanish or cancel each other since the low-energy model and, therefore, { WRτ } themselves are defined by starting from the nonmagnetic LDA band structure (Ref.), which preserves the inversion symmetry. Thus, the main contribution to P in our model analysis arises from the evolution of | Cnk 〉.
    • ) W R τ (r). Then, the matrix elements 〈 W R τ | r - R - τ | W R τ 〉of P in the basis of { W R τ } will either vanish or cancel each other since the low-energy model and, therefore, { W R τ } themselves are defined by starting from the nonmagnetic LDA band structure (Ref.), which preserves the inversion symmetry. Thus, the main contribution to P in our model analysis arises from the evolution of | C n k 〉.
  • 18
    • 77957590836 scopus 로고    scopus 로고
    • The interaction term with the magnetic field is given by Ĥ B =- μB B · (2 ŝ + l̂ ), where ŝ and l̂ are the operators of spin and orbital angular momentum, respectively.
    • The interaction term with the magnetic field is given by H ̂ B = - μ B B · (2 s ̂ + l ̂), where s ̂ and l ̂ are the operators of spin and orbital angular momentum, respectively.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.