-
1
-
-
67650729463
-
-
10.1103/Physics.2.20
-
D. Khomskii, Physics 2, 20 (2009). 10.1103/Physics.2.20
-
(2009)
Physics
, vol.2
, pp. 20
-
-
Khomskii, D.1
-
3
-
-
33846659732
-
-
10.1021/ja0664032
-
A. A. Belik, S. Iikubo, T. Yokosawa, K. Kodama, M. Igawa, S. Shamoto, M. Azuma, M. Takano, K. Kimoto, Y. Matsui, and E. Takayama-Muromachi, J. Am. Chem. Soc. 129, 971 (2007). 10.1021/ja0664032
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 971
-
-
Belik, A.A.1
Iikubo, S.2
Yokosawa, T.3
Kodama, K.4
Igawa, M.5
Shamoto, S.6
Azuma, M.7
Takano, M.8
Kimoto, K.9
Matsui, Y.10
Takayama-Muromachi, E.11
-
9
-
-
12044256522
-
-
10.1103/RevModPhys.66.899
-
R. Resta, Rev. Mod. Phys. 66, 899 (1994). 10.1103/RevModPhys.66.899
-
(1994)
Rev. Mod. Phys.
, vol.66
, pp. 899
-
-
Resta, R.1
-
10
-
-
77949406339
-
-
10.1088/0953-8984/22/12/123201
-
R. Resta, J. Phys.: Condens. Matter 22, 123201 (2010). 10.1088/0953-8984/22/12/123201
-
(2010)
J. Phys.: Condens. Matter
, vol.22
, pp. 123201
-
-
Resta, R.1
-
11
-
-
47249132020
-
-
10.1088/0953-8984/20/29/293201
-
I. V. Solovyev, J. Phys.: Condens. Matter 20, 293201 (2008). 10.1088/0953-8984/20/29/293201
-
(2008)
J. Phys.: Condens. Matter
, vol.20
, pp. 293201
-
-
Solovyev, I.V.1
-
12
-
-
67649086691
-
-
10.1143/JPSJ.78.054710
-
I. Solovyev, J. Phys. Soc. Jpn. 78, 054710 (2009). 10.1143/JPSJ.78.054710
-
(2009)
J. Phys. Soc. Jpn.
, vol.78
, pp. 054710
-
-
Solovyev, I.1
-
13
-
-
77957559598
-
-
The interatomic magnetic interactions are defined as one half of the Hartree-Fock energy difference between antiferromagnetic and ferromagnetic configurations in each bond.
-
The interatomic magnetic interactions are defined as one half of the Hartree-Fock energy difference between antiferromagnetic and ferromagnetic configurations in each bond.
-
-
-
-
14
-
-
77957608537
-
-
We use the following setting for the monoclinic translations: R1,2 = 1 2 (sinβa,∓b,cosβa ) and R3 = (0,0,c ). The positions of four Mn atoms in the unit cell are specified by the vectors: τ1 = yMn ( R1 - R2 ) + 1 4 R3, τ2 =- τ1, τ3 = 1 2 R1, and τ4 = 1 2 ( R2 + R3 ). The experimental structure parameters were taken from Ref.. More detailed information about the settings, which were used for the crystal structure of BiMnO3, can be found in Refs..
-
We use the following setting for the monoclinic translations: R 1, 2 = 1 2 (sin β a, ∓ b, cos β a) and R 3 = (0, 0, c). The positions of four Mn atoms in the unit cell are specified by the vectors: τ 1 = y Mn (R 1 - R 2) + 1 4 R 3, τ 2 = - τ 1, τ 3 = 1 2 R 1, and τ 4 = 1 2 (R 2 + R 3). The experimental structure parameters were taken from Ref.. More detailed information about the settings, which were used for the crystal structure of BiMnO 3, can be found in Refs..
-
-
-
-
15
-
-
36448970146
-
-
10.1103/PhysRevLett.99.227201
-
S. Picozzi, K. Yamauchi, B. Sanyal, I. A. Sergienko, and E. Dagotto, Phys. Rev. Lett. 99, 227201 (2007). 10.1103/PhysRevLett.99.227201
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 227201
-
-
Picozzi, S.1
Yamauchi, K.2
Sanyal, B.3
Sergienko, I.A.4
Dagotto, E.5
-
16
-
-
77957565763
-
-
) WRτ (r). Then, the matrix elements 〈 WRτ | r-R-τ | WRτ 〉of P in the basis of { WRτ } will either vanish or cancel each other since the low-energy model and, therefore, { WRτ } themselves are defined by starting from the nonmagnetic LDA band structure (Ref.), which preserves the inversion symmetry. Thus, the main contribution to P in our model analysis arises from the evolution of | Cnk 〉.
-
) W R τ (r). Then, the matrix elements 〈 W R τ | r - R - τ | W R τ 〉of P in the basis of { W R τ } will either vanish or cancel each other since the low-energy model and, therefore, { W R τ } themselves are defined by starting from the nonmagnetic LDA band structure (Ref.), which preserves the inversion symmetry. Thus, the main contribution to P in our model analysis arises from the evolution of | C n k 〉.
-
-
-
-
17
-
-
46749149670
-
-
10.1103/PhysRevB.78.014403
-
K. Yamauchi, F. Freimuth, S. Blügel, and S. Picozzi, Phys. Rev. B 78, 014403 (2008). 10.1103/PhysRevB.78.014403
-
(2008)
Phys. Rev. B
, vol.78
, pp. 014403
-
-
Yamauchi, K.1
Freimuth, F.2
Blügel, S.3
Picozzi, S.4
-
18
-
-
77957590836
-
-
The interaction term with the magnetic field is given by Ĥ B =- μB B · (2 ŝ + l̂ ), where ŝ and l̂ are the operators of spin and orbital angular momentum, respectively.
-
The interaction term with the magnetic field is given by H ̂ B = - μ B B · (2 s ̂ + l ̂), where s ̂ and l ̂ are the operators of spin and orbital angular momentum, respectively.
-
-
-
-
19
-
-
0036531145
-
-
A. Moreira dos Santos, A. K. Cheetham, T. Atou, Y. Syono, Y. Yamaguchi, K. Ohoyama, H. Chiba, and C. N. R. Rao, Solid State Commun. 122, 49 (2002).
-
(2002)
Solid State Commun.
, vol.122
, pp. 49
-
-
Moreira Dos Santos, A.1
Cheetham, A.K.2
Atou, T.3
Syono, Y.4
Yamaguchi, Y.5
Ohoyama, K.6
Chiba, H.7
Rao, C.N.R.8
|