메뉴 건너뛰기




Volumn 82, Issue 7, 2010, Pages

Efficient low-order scaling method for large-scale electronic structure calculations with localized basis functions

Author keywords

[No Author keywords available]

Indexed keywords


EID: 77957575829     PISSN: 10980121     EISSN: 1550235X     Source Type: Journal    
DOI: 10.1103/PhysRevB.82.075131     Document Type: Article
Times cited : (30)

References (65)
  • 1
    • 4243606192 scopus 로고
    • 10.1103/PhysRevLett.55.2471
    • R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985). 10.1103/PhysRevLett.55.2471
    • (1985) Phys. Rev. Lett. , vol.55 , pp. 2471
    • Car, R.1    Parrinello, M.2
  • 3
    • 0001889388 scopus 로고
    • in NATO Advanced Study Institute, Series C: Mathematical and Physical Sciences Vol. edited by G. H. F. Diercksen and S. Wilson (Plenum, New York
    • E. R. Davidson, in Methods in Computational Molecular Physics, NATO Advanced Study Institute, Series C: Mathematical and Physical Sciences Vol. 113, edited by, G. H. F. Diercksen, and, S. Wilson, (Plenum, New York, 1983), p. 95.
    • (1983) Methods in Computational Molecular Physics , vol.113 , pp. 95
    • Davidson, E.R.1
  • 4
    • 84986524957 scopus 로고
    • 10.1016/0009-2614(80)80396-4
    • P. Pulay, Chem. Phys. Lett. 73, 393 (1980). 10.1016/0009-2614(80)80396-4
    • (1980) Chem. Phys. Lett. , vol.73 , pp. 393
    • Pulay, P.1
  • 5
    • 36149043876 scopus 로고
    • 10.1088/0305-4470/18/9/018
    • D. M. Wood and A. Zunger, J. Phys. A 18, 1343 (1985). 10.1088/0305-4470/18/9/018
    • (1985) J. Phys. A , vol.18 , pp. 1343
    • Wood, D.M.1    Zunger, A.2
  • 8
    • 2442537377 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.54.11169
    • G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996). 10.1103/PhysRevB.54.11169
    • (1996) Phys. Rev. B , vol.54 , pp. 11169
    • Kresse, G.1    Furthmuller, J.2
  • 9
    • 0000652188 scopus 로고
    • 10.1145/320941.320947
    • A. S. Householder, J. ACM 5, 339 (1958). 10.1145/320941.320947
    • (1958) J. ACM , vol.5 , pp. 339
    • Householder, A.S.1
  • 10
    • 0004236492 scopus 로고    scopus 로고
    • Johns Hopkins University Press, Baltimore and London
    • G. H. Golub and C. F. van Loan, Matrix Computations (Johns Hopkins University Press, Baltimore and London, 1996).
    • (1996) Matrix Computations
    • Golub, G.H.1    Van Loan, C.F.2
  • 11
    • 0033246389 scopus 로고    scopus 로고
    • 10.1103/RevModPhys.71.1085, and references therein.
    • S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999) 10.1103/RevModPhys.71.1085
    • (1999) Rev. Mod. Phys. , vol.71 , pp. 1085
    • Goedecker, S.1
  • 13
    • 0011621942 scopus 로고
    • 10.1103/PhysRevLett.66.1438
    • W. Yang, Phys. Rev. Lett. 66, 1438 (1991). 10.1103/PhysRevLett.66.1438
    • (1991) Phys. Rev. Lett. , vol.66 , pp. 1438
    • Yang, W.1
  • 14
    • 24544453368 scopus 로고
    • 10.1103/PhysRevLett.63.2480
    • D. G. Pettifor, Phys. Rev. Lett. 63, 2480 (1989). 10.1103/PhysRevLett.63. 2480
    • (1989) Phys. Rev. Lett. , vol.63 , pp. 2480
    • Pettifor, D.G.1
  • 15
    • 0001605413 scopus 로고
    • 10.1103/PhysRevLett.71.3842
    • M. Aoki, Phys. Rev. Lett. 71, 3842 (1993). 10.1103/PhysRevLett.71.3842
    • (1993) Phys. Rev. Lett. , vol.71 , pp. 3842
    • Aoki, M.1
  • 16
    • 0035891156 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.64.195126
    • T. Ozaki and K. Terakura, Phys. Rev. B 64, 195126 (2001). 10.1103/PhysRevB.64.195126
    • (2001) Phys. Rev. B , vol.64 , pp. 195126
    • Ozaki, T.1    Terakura, K.2
  • 17
    • 33845246597 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.74.245101
    • T. Ozaki, Phys. Rev. B 74, 245101 (2006). 10.1103/PhysRevB.74.245101
    • (2006) Phys. Rev. B , vol.74 , pp. 245101
    • Ozaki, T.1
  • 23
    • 77954828268 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.81.045109
    • K. Varga, Phys. Rev. B 81, 045109 (2010). 10.1103/PhysRevB.81.045109
    • (2010) Phys. Rev. B , vol.81 , pp. 045109
    • Varga, K.1
  • 24
    • 33947215974 scopus 로고    scopus 로고
    • 10.1143/JPSJ.76.034708
    • E. Tsuchida, J. Phys. Soc. Jpn. 76, 034708 (2007). 10.1143/JPSJ.76.034708
    • (2007) J. Phys. Soc. Jpn. , vol.76 , pp. 034708
    • Tsuchida, E.1
  • 28
    • 0001067557 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.58.15296
    • R. Baer and M. Head-Gordon, Phys. Rev. B 58, 15296 (1998). 10.1103/PhysRevB.58.15296
    • (1998) Phys. Rev. B , vol.58 , pp. 15296
    • Baer, R.1    Head-Gordon, M.2
  • 31
    • 10644250257 scopus 로고
    • 10.1103/PhysRev.136.B864
    • P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). 10.1103/PhysRev.136.B864
    • (1964) Phys. Rev. , vol.136 , pp. 864
    • Hohenberg, P.1    Kohn, W.2
  • 32
    • 0042113153 scopus 로고
    • 10.1103/PhysRev.140.A1133
    • W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). 10.1103/PhysRev.140.A1133
    • (1965) Phys. Rev. , vol.140 , pp. 1133
    • Kohn, W.1    Sham, L.J.2
  • 42
    • 26144450583 scopus 로고
    • 10.1103/PhysRevB.23.5048
    • J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981). 10.1103/PhysRevB.23.5048
    • (1981) Phys. Rev. B , vol.23 , pp. 5048
    • Perdew, J.P.1    Zunger, A.2
  • 47
    • 77957590558 scopus 로고
    • Proceedings of the Eighth PICA Conference, Minneapolis, Minnesota
    • K. Takahashi, J. Fagan, and M.-S. Chin, Proceedings of the Eighth PICA Conference, Minneapolis, Minnesota, 1973 (unpublished), pp. 63-69.
    • (1973) , pp. 63-69
    • Takahashi, K.1    Fagan, J.2    Chin, M.-S.3
  • 49
    • 77957607300 scopus 로고    scopus 로고
    • Recently, Varga developed a similar method for quasi-one-dimensional systems in which the density matrix is computed based on a contour integration and the evaluation of the Green's function by making use of a LD LT factorization (Ref.). Although he suggested a possible way to extend his method to higher dimensional systems, the feasibility and the required computational cost remain unclear.
    • Recently, Varga developed a similar method for quasi-one-dimensional systems in which the density matrix is computed based on a contour integration and the evaluation of the Green's function by making use of a L D L T factorization (Ref.). Although he suggested a possible way to extend his method to higher dimensional systems, the feasibility and the required computational cost remain unclear.
  • 50
    • 0037495068 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.67.155108;
    • T. Ozaki, Phys. Rev. B 67, 155108 (2003) 10.1103/PhysRevB.67.155108
    • (2003) Phys. Rev. B , vol.67 , pp. 155108
    • Ozaki, T.1
  • 51
    • 42749105530 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.69.195113
    • T. Ozaki and H. Kino, Phys. Rev. B 69, 195113 (2004). 10.1103/PhysRevB.69.195113
    • (2004) Phys. Rev. B , vol.69 , pp. 195113
    • Ozaki, T.1    Kino, H.2
  • 52
    • 0009181011 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.54.7602
    • E. Tsuchida and M. Tsukada, Phys. Rev. B 54, 7602 (1996). 10.1103/PhysRevB.54.7602
    • (1996) Phys. Rev. B , vol.54 , pp. 7602
    • Tsuchida, E.1    Tsukada, M.2
  • 54
    • 33846443185 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.75.035123
    • T. Ozaki, Phys. Rev. B 75, 035123 (2007). 10.1103/PhysRevB.75.035123
    • (2007) Phys. Rev. B , vol.75 , pp. 035123
    • Ozaki, T.1
  • 56
    • 77957554049 scopus 로고    scopus 로고
    • When z0 =i Re2 and z1 =i Re, it can be shown that in Eq. Re [λG (i Re2 ) ] ∼O (κ) and Re [γG (i Re ) ] ∼O ( ∑ν εν ), implying that they are not a large number, which is effective to avoid the numerical round-off error in the calculation of Eq. .
    • When z 0 = i R e 2 and z 1 = i R e, it can be shown that in Eq. Re [λ G (i R e 2)] ∼ O (κ) and Re [γ G (i R e)] ∼ O (∑ ν ε ν), implying that they are not a large number, which is effective to avoid the numerical round-off error in the calculation of Eq..
  • 57
    • 77957603085 scopus 로고    scopus 로고
    • In a precise sense, we use domain to mean a system that we are now trying to bisect into two subdomains. In the recursive dissection, we obtain two subdomains after the dissection of the domain. Once we move to each subdomain to perform the next dissection, then the subdomain is called domain in the precise sense. In the text both the terms are distinguished for cases which may cause confusion.
    • In a precise sense, we use domain to mean a system that we are now trying to bisect into two subdomains. In the recursive dissection, we obtain two subdomains after the dissection of the domain. Once we move to each subdomain to perform the next dissection, then the subdomain is called domain in the precise sense. In the text both the terms are distinguished for cases which may cause confusion.
  • 61
    • 19944396144 scopus 로고    scopus 로고
    • 10.1016/j.amc.2004.04.120
    • X. Wu, Appl. Math. Comput. 166, 299 (2005). 10.1016/j.amc.2004.04.120
    • (2005) Appl. Math. Comput. , vol.166 , pp. 299
    • Wu, X.1
  • 62
    • 77957573708 scopus 로고    scopus 로고
    • ) 2 with the analytically evaluated coefficients as initial values. We find that the coefficients refined by the minimization are much more accurate than the analytic ones for serious cases, and that the refinement is quite effective to avoid the numerical instability.
    • ) 2 with the analytically evaluated coefficients as initial values. We find that the coefficients refined by the minimization are much more accurate than the analytic ones for serious cases, and that the refinement is quite effective to avoid the numerical instability.
  • 63
    • 77957598253 scopus 로고    scopus 로고
    • It is noted that the recurrence formula derived by Lin allows us to compute selected elements in O ( N2 ) operations for 3D systems (Ref.), which is superior to our recurrence formulas. However, the size of separators in their way for the nested dissection can be larger than that of our separators especially for the case that basis functions overlap with a number of other basis functions like in the PAO basis functions, which leads to a large prefactor for the computational cost in spite of the lower scaling. Also, the comparison with the algorithm by Takahashi (Ref.) and Erisman and Tinney (Ref.) will be in a future work.
    • It is noted that the recurrence formula derived by Lin allows us to compute selected elements in O (N 2) operations for 3D systems (Ref.), which is superior to our recurrence formulas. However, the size of separators in their way for the nested dissection can be larger than that of our separators especially for the case that basis functions overlap with a number of other basis functions like in the PAO basis functions, which leads to a large prefactor for the computational cost in spite of the lower scaling. Also, the comparison with the algorithm by Takahashi (Ref.) and Erisman and Tinney (Ref.) will be in a future work.
  • 64
    • 77957570962 scopus 로고    scopus 로고
    • The code, OPENMX, pseudoatomic basis functions, and pseudopotentials are available on a web site
    • The code, OPENMX, pseudoatomic basis functions, and pseudopotentials are available on a web site, http://www.openmx-square.org/


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.