메뉴 건너뛰기




Volumn 82, Issue 8, 2010, Pages

Two-dimensional electron gas in δ -doped SrTiO3

Author keywords

[No Author keywords available]

Indexed keywords


EID: 77957552871     PISSN: 10980121     EISSN: 1550235X     Source Type: Journal    
DOI: 10.1103/PhysRevB.82.081103     Document Type: Article
Times cited : (88)

References (21)
  • 5
    • 4243776394 scopus 로고
    • 10.1103/PhysRevB.6.4740
    • L. F. Mattheiss, Phys. Rev. B 6, 4740 (1972). 10.1103/PhysRevB.6.4740
    • (1972) Phys. Rev. B , vol.6 , pp. 4740
    • Mattheiss, L.F.1
  • 9
    • 77249099503 scopus 로고    scopus 로고
    • 10.1103/Physics.2.50
    • D. Awschalom and N. Samarth, Physics 2, 50 (2009). 10.1103/Physics.2.50
    • (2009) Physics , vol.2 , pp. 50
    • Awschalom, D.1    Samarth, N.2
  • 14
    • 77957599014 scopus 로고    scopus 로고
    • See supplementary material at http://link.aps.org/supplemental/10.1103/ PhysRevB.82.081103 for SIMS data, the raw magnetoresistance data, results from Hall measurements, two-subband model fitting, and determination of the effective mass.
  • 15
    • 0000207828 scopus 로고
    • 10.1088/0022-3719/19/34/015
    • A. Isihara and L. Smrcka, J. Phys. C 19, 6777 (1986). 10.1088/0022-3719/19/34/015
    • (1986) J. Phys. C , vol.19 , pp. 6777
    • Isihara, A.1    Smrcka, L.2
  • 16
    • 77957592590 scopus 로고    scopus 로고
    • Expression was developed for spherical Fermi surfaces. Because there is no similar model developed for two-dimensional systems in the limit of weak sinusoidal oscillations and with the completeness of Eq. , we use Eq. keeping the first two harmonics (s=1,2 ). In Eq. the extremal orbit area determines the fundamental frequency (s=1 ) which here is the area of the two-dimensional orbit. We note that Eq. would not be chosen if the Shubnikov-de Haas oscillations had exhibited a strong modulation of the resistance, resistance "zeros" and plateaus in the Hall resistance.
    • Expression was developed for spherical Fermi surfaces. Because there is no similar model developed for two-dimensional systems in the limit of weak sinusoidal oscillations and with the completeness of Eq., we use Eq. keeping the first two harmonics (s = 1, 2). In Eq. the extremal orbit area determines the fundamental frequency (s = 1) which here is the area of the two-dimensional orbit. We note that Eq. would not be chosen if the Shubnikov-de Haas oscillations had exhibited a strong modulation of the resistance, resistance "zeros" and plateaus in the Hall resistance.
  • 17
    • 85023557464 scopus 로고
    • in edited by R. K. Williardson and A. C. Beer (Academic Press, New York, 10.1016/S0080-8784(08)62379-0
    • L. M. Roth and P. N. Argyres, in Semiconductors and Semimetals, edited by, R. K. Williardson, and, A. C. Beer, (Academic Press, New York, 1966), Vol. 1. 10.1016/S0080-8784(08)62379-0
    • (1966) Semiconductors and Semimetals , vol.1
    • Roth, L.M.1    Argyres, P.N.2
  • 20
    • 24444456383 scopus 로고
    • 10.1103/PhysRevB.31.888
    • D. A. Broido and L. J. Sham, Phys. Rev. B 31, 888 (1985). 10.1103/PhysRevB.31.888
    • (1985) Phys. Rev. B , vol.31 , pp. 888
    • Broido, D.A.1    Sham, L.J.2
  • 21


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.