-
1
-
-
0025886026
-
The finite element method with Lagrange multipliers on the boundary: circumventing the Babuska-Brezzi condition
-
Barbosa H.J.C., Hughes T.J.R. The finite element method with Lagrange multipliers on the boundary: circumventing the Babuska-Brezzi condition. Comput. Meth. Mech. Engrg. 1991, 85(1):109-128.
-
(1991)
Comput. Meth. Mech. Engrg.
, vol.85
, Issue.1
, pp. 109-128
-
-
Barbosa, H.J.C.1
Hughes, T.J.R.2
-
2
-
-
65449162254
-
A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method
-
Béchet E., Moës N., Wohlmuth B. A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method. Int. J. Numer. Meth. Engrg. 2009, 78:931-954.
-
(2009)
Int. J. Numer. Meth. Engrg.
, vol.78
, pp. 931-954
-
-
Béchet, E.1
Moës, N.2
Wohlmuth, B.3
-
3
-
-
0009892424
-
Fundamentals of P.D.E for numerical analysis
-
McGraw-Hill, H. Kardestuncer, D.H. Norrie (Eds.)
-
Brezzi F., Gilardi G. Fundamentals of P.D.E for numerical analysis. Finite Element Handbook 1987, McGraw-Hill. H. Kardestuncer, D.H. Norrie (Eds.).
-
(1987)
Finite Element Handbook
-
-
Brezzi, F.1
Gilardi, G.2
-
4
-
-
77957358934
-
-
Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method, Department of Mathematical Sciences, Chalmers University of Technology, Preprint
-
E. Burman, P. Hansbo, Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method, Department of Mathematical Sciences, Chalmers University of Technology, Preprint, 2010.
-
(2010)
-
-
Burman, E.1
Hansbo, P.2
-
5
-
-
77956029478
-
-
Interior-penalty-stabilized Lagrange multiplier methods for the finite-element solution of elliptic interface problems, IMA J. Numer. Anal., in press, doi:10.1093/imanum/drn081
-
E. Burman, P. Hansbo, Interior-penalty-stabilized Lagrange multiplier methods for the finite-element solution of elliptic interface problems, IMA J. Numer. Anal., in press, doi:10.1093/imanum/drn081.
-
-
-
Burman, E.1
Hansbo, P.2
-
6
-
-
11244324581
-
Theory and practice of finite elements
-
Springer-Verlag, New York
-
Ern A., Guermond J.-L. Theory and practice of finite elements. Applied Mathematical Sciences 2004, vol. 159. Springer-Verlag, New York.
-
(2004)
Applied Mathematical Sciences
, vol.159
-
-
Ern, A.1
Guermond, J.-L.2
-
7
-
-
0001217594
-
Error analysis of a fictitious domain method applied to a Dirichlet problem
-
Girault V., Glowinski R. Error analysis of a fictitious domain method applied to a Dirichlet problem. Japan J. Indust. Appl. Math. 1995, 12(3):487-514.
-
(1995)
Japan J. Indust. Appl. Math.
, vol.12
, Issue.3
, pp. 487-514
-
-
Girault, V.1
Glowinski, R.2
-
8
-
-
0037159814
-
An unfitted finite element method, based on Nitsche's method, for elliptic interface problems
-
Hansbo A., Hansbo P. An unfitted finite element method, based on Nitsche's method, for elliptic interface problems. Comput. Methods Appl. Mech. Engrg. 2002, 191(47-48):5537-5552.
-
(2002)
Comput. Methods Appl. Mech. Engrg.
, vol.191
, Issue.47-48
, pp. 5537-5552
-
-
Hansbo, A.1
Hansbo, P.2
-
9
-
-
76749153485
-
A new fictitious domain approach inspired by the extended finite element method
-
Haslinger J., Renard Y. A new fictitious domain approach inspired by the extended finite element method. SIAM J. Numer. Anal. 2009, 47(2):1474-1499.
-
(2009)
SIAM J. Numer. Anal.
, vol.47
, Issue.2
, pp. 1474-1499
-
-
Haslinger, J.1
Renard, Y.2
-
10
-
-
77957377629
-
Numerical analysis of a finite element/volume penalty method
-
Maury B. Numerical analysis of a finite element/volume penalty method. SIAM J. Numer. Anal. 2009, 47(2):1126-1148.
-
(2009)
SIAM J. Numer. Anal.
, vol.47
, Issue.2
, pp. 1126-1148
-
-
Maury, B.1
-
11
-
-
33748671121
-
Imposing Dirichlet boundary conditions in the extended finite element method
-
Moës N., Béchet E., Tourbier M. Imposing Dirichlet boundary conditions in the extended finite element method. Int. J. Numer. Meth. Engrg. 2006, 67:1641-1669.
-
(2006)
Int. J. Numer. Meth. Engrg.
, vol.67
, pp. 1641-1669
-
-
Moës, N.1
Béchet, E.2
Tourbier, M.3
-
12
-
-
84951671794
-
Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind
-
Nitsche J. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 1971, 36:9-15.
-
(1971)
Abh. Math. Sem. Univ. Hamburg
, vol.36
, pp. 9-15
-
-
Nitsche, J.1
|