-
7
-
-
42449100399
-
-
10.1103/PhysRevLett.100.167201
-
J.-V. Kim, Q. Mistral, C. Chappert, V. S. Tiberkevich, and A. N. Slavin, Phys. Rev. Lett. 100, 167201 (2008). 10.1103/PhysRevLett.100.167201
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 167201
-
-
Kim, J.-V.1
Mistral, Q.2
Chappert, C.3
Tiberkevich, V.S.4
Slavin, A.N.5
-
9
-
-
65249165028
-
-
10.1063/1.3056407
-
K. Kudo, T. Nagasawa, R. Sato, and K. Mizushima, J. Appl. Phys. 105, 07D105 (2009). 10.1063/1.3056407
-
(2009)
J. Appl. Phys.
, vol.105
-
-
Kudo, K.1
Nagasawa, T.2
Sato, R.3
Mizushima, K.4
-
11
-
-
0018494393
-
-
10.1029/RS014i004p00521
-
P. Lesage and C. Audoin, Radio Sci. 14, 521 (1979). 10.1029/ RS014i004p00521
-
(1979)
Radio Sci.
, vol.14
, pp. 521
-
-
Lesage, P.1
Audoin, C.2
-
12
-
-
0000233832
-
-
10.1103/PhysRev.160.290
-
M. Lax, Phys. Rev. 160, 290 (1967). 10.1103/PhysRev.160.290
-
(1967)
Phys. Rev.
, vol.160
, pp. 290
-
-
Lax, M.1
-
13
-
-
77957364543
-
-
As is common for real signals (Ref.), we define the PSD over positive frequencies only and normalize so that its integral over these frequencies gives the variance of the signal.
-
As is common for real signals (Ref.), we define the PSD over positive frequencies only and normalize so that its integral over these frequencies gives the variance of the signal.
-
-
-
-
15
-
-
34247328195
-
-
10.1103/PhysRevB.75.140404
-
M. R. Pufall, W. H. Rippard, M. L. Schneider, and S. E. Russek, Phys. Rev. B 75, 140404 (2007). 10.1103/PhysRevB.75.140404
-
(2007)
Phys. Rev. B
, vol.75
, pp. 140404
-
-
Pufall, M.R.1
Rippard, W.H.2
Schneider, M.L.3
Russek, S.E.4
-
16
-
-
77954786306
-
-
10.1103/PhysRevB.81.014426
-
W. H. Rippard, A. M. Deac, M. R. Pufall, J. M. Shaw, M. W. Keller, S. E. Russek, G. E. W. Bauer, and C. Serpico, Phys. Rev. B 81, 014426 (2010). 10.1103/PhysRevB.81.014426
-
(2010)
Phys. Rev. B
, vol.81
, pp. 014426
-
-
Rippard, W.H.1
Deac, A.M.2
Pufall, M.R.3
Shaw, J.M.4
Keller, M.W.5
Russek, S.E.6
Bauer, G.E.W.7
Serpico, C.8
-
17
-
-
0004161838
-
-
3rd ed. (Cambridge University Press, Cambridge, England
-
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University Press, Cambridge, England, 2007).
-
(2007)
Numerical Recipes: The Art of Scientific Computing
-
-
Press, W.H.1
Teukolsky, S.A.2
Vetterling, W.T.3
Flannery, B.P.4
-
18
-
-
67049171326
-
-
10.1063/1.3133356
-
M. W. Keller, A. B. Kos, T. J. Silva, W. H. Rippard, and M. R. Pufall, Appl. Phys. Lett. 94, 193105 (2009). 10.1063/1.3133356
-
(2009)
Appl. Phys. Lett.
, vol.94
, pp. 193105
-
-
Keller, M.W.1
Kos, A.B.2
Silva, T.J.3
Rippard, W.H.4
Pufall, M.R.5
-
19
-
-
77957331665
-
-
This analysis should not be confused with that done by a DFT spectrum analyzer. We take only the center frequency from each segment, not a complete power spectrum of VIF (t), which is why our result is independent of amplitude fluctuations [ ε (t) in Eq. ]. Amplitude modulation of VIF (t) would create sidebands but would not affect the center frequency of the main peak.
-
This analysis should not be confused with that done by a DFT spectrum analyzer. We take only the center frequency from each segment, not a complete power spectrum of V IF (t), which is why our result is independent of amplitude fluctuations [ε (t) in Eq.]. Amplitude modulation of V IF (t) would create sidebands but would not affect the center frequency of the main peak
-
-
-
-
20
-
-
77957358664
-
-
Comparing the two analysis methods for a variety of experimental conditions and analysis parameters can reveal each method's limitations. As an example, for IF waveforms with the smallest signal-to-noise ratios (smaller than about half that shown in Fig. ), we found that the zero-crossing method gave distorted results while the DFT method remained robust.
-
Comparing the two analysis methods for a variety of experimental conditions and analysis parameters can reveal each method's limitations. As an example, for IF waveforms with the smallest signal-to-noise ratios (smaller than about half that shown in Fig.), we found that the zero-crossing method gave distorted results while the DFT method remained robust.
-
-
-
-
21
-
-
0020090793
-
-
10.1109/JQE.1982.1071522
-
C. Henry, IEEE J. Quantum Electron. 18, 259 (1982). 10.1109/JQE.1982. 1071522
-
(1982)
IEEE J. Quantum Electron.
, vol.18
, pp. 259
-
-
Henry, C.1
-
23
-
-
26944440914
-
-
10.1103/PhysRevA.71.043809
-
G. M. Stéphan, T. T. Tam, S. Blin, P. Besnard, and M. Têtu, Phys. Rev. A 71, 043809 (2005). 10.1103/PhysRevA.71.043809
-
(2005)
Phys. Rev. A
, vol.71
, pp. 043809
-
-
Stéphan, G.M.1
Tam, T.T.2
Blin, S.3
Besnard, P.4
Têtu, M.5
-
25
-
-
77957360872
-
-
In an actual SA, the LO is offset from the center of the frequency bin so that the IF and the bandpass filter are centered around a frequency that is optimal for subsequent signal processing. This is how our SA generates the IF signal centered around 70 MHz that we use for our time-domain measurements.
-
In an actual SA, the LO is offset from the center of the frequency bin so that the IF and the bandpass filter are centered around a frequency that is optimal for subsequent signal processing. This is how our SA generates the IF signal centered around 70 MHz that we use for our time-domain measurements.
-
-
-
-
26
-
-
77957346308
-
-
Actual SAs are carefully designed to yield accurate power values for a variety of detection modes. Since we are interested only in the normalized width and shape of SV (ν), we can ignore many effects that affect the power in all bins equally.
-
Actual SAs are carefully designed to yield accurate power values for a variety of detection modes. Since we are interested only in the normalized width and shape of S V (ν), we can ignore many effects that affect the power in all bins equally
-
-
-
-
27
-
-
19744381294
-
-
10.1103/PhysRevB.70.100406
-
W. H. Rippard, M. R. Pufall, S. Kaka, T. J. Silva, and S. E. Russek, Phys. Rev. B 70, 100406 (2004). 10.1103/PhysRevB.70.100406
-
(2004)
Phys. Rev. B
, vol.70
, pp. 100406
-
-
Rippard, W.H.1
Pufall, M.R.2
Kaka, S.3
Silva, T.J.4
Russek, S.E.5
-
28
-
-
4143090739
-
-
10.1103/PhysRevLett.92.027201
-
W. H. Rippard, M. R. Pufall, S. Kaka, S. E. Russek, and T. J. Silva, Phys. Rev. Lett. 92, 027201 (2004). 10.1103/PhysRevLett.92.027201
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 027201
-
-
Rippard, W.H.1
Pufall, M.R.2
Kaka, S.3
Russek, S.E.4
Silva, T.J.5
-
29
-
-
65549132323
-
-
10.1103/PhysRevB.79.140404
-
C. Boone, J. A. Katine, J. R. Childress, J. Zhu, X. Cheng, and I. N. Krivorotov, Phys. Rev. B 79, 140404 (2009). 10.1103/PhysRevB.79.140404
-
(2009)
Phys. Rev. B
, vol.79
, pp. 140404
-
-
Boone, C.1
Katine, J.A.2
Childress, J.R.3
Zhu, J.4
Cheng, X.5
Krivorotov, I.N.6
-
30
-
-
71749114661
-
-
10.1063/1.3260233
-
T. Devolder, L. Bianchini, J.-V. Kim, P. Crozat, C. Chappert, S. Cornelissen, M. O. de Beeck, and L. Lagae, J. Appl. Phys. 106, 103921 (2009). 10.1063/1.3260233
-
(2009)
J. Appl. Phys.
, vol.106
, pp. 103921
-
-
Devolder, T.1
Bianchini, L.2
Kim, J.-V.3
Crozat, P.4
Chappert, C.5
Cornelissen, S.6
De Beeck, M.O.7
Lagae, L.8
-
31
-
-
67649386209
-
-
10.1103/PhysRevLett.102.257202
-
D. Houssameddine, U. Ebels, B. Dieny, K. Garello, J.-P. Michel, B. Delaet, B. Viala, M.-C. Cyrille, D. Mauri, and J. A. Katine, Phys. Rev. Lett. 102, 257202 (2009). 10.1103/PhysRevLett.102.257202
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 257202
-
-
Houssameddine, D.1
Ebels, U.2
Dieny, B.3
Garello, K.4
Michel, J.-P.5
Delaet, B.6
Viala, B.7
Cyrille, M.-C.8
Mauri, D.9
Katine, J.A.10
-
32
-
-
73649096916
-
-
10.1103/PhysRevB.80.180411
-
V. S. Pribiag, G. Finocchio, B. J. Williams, D. C. Ralph, and R. A. Buhrman, Phys. Rev. B 80, 180411 (2009). 10.1103/PhysRevB.80.180411
-
(2009)
Phys. Rev. B
, vol.80
, pp. 180411
-
-
Pribiag, V.S.1
Finocchio, G.2
Williams, B.J.3
Ralph, D.C.4
Buhrman, R.A.5
|