-
2
-
-
0003512241
-
-
Springer-Verlag, New York, Inc., New York
-
Becker T., Weispfenning V., Kredel H. Gröbner Bases: A Computational Approach to Commutative Algebra 1993, Springer-Verlag, New York, Inc., New York.
-
(1993)
Gröbner Bases: A Computational Approach to Commutative Algebra
-
-
Becker, T.1
Weispfenning, V.2
Kredel, H.3
-
3
-
-
77957253110
-
-
Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalem Polynomideal (an algorithm for finding the basis elements in the residue class ring modulo a zero dimensional polynomial ideal). Ph.D. Thesis, Mathematical Institute, University of Innsbruck, Austria (English translation published in the Journal of Symbolic Computation (2006) 47
-
Buchberger, B., 1965. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalem Polynomideal (an algorithm for finding the basis elements in the residue class ring modulo a zero dimensional polynomial ideal). Ph.D. Thesis, Mathematical Institute, University of Innsbruck, Austria (English translation published in the Journal of Symbolic Computation (2006) 475-511).
-
(1965)
-
-
Buchberger, B.1
-
5
-
-
77957252523
-
-
Singular implementation of Faugère's F5 algorithm. Singular library.
-
Eder, C., Perry, J., 2008. Singular implementation of Faugère's F5 algorithm. Singular library. http://www.math.usm.edu/perry/Research/f5_library.lib.
-
(2008)
-
-
Eder, C.1
Perry, J.2
-
6
-
-
0033143274
-
A new efficient algorithm for computing Gröbner bases (F4)
-
Faugère J.-C. A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure and Applied Algebra 1999, 139(1-3):61-88.
-
(1999)
Journal of Pure and Applied Algebra
, vol.139
, Issue.1-3
, pp. 61-88
-
-
Faugère, J.-C.1
-
7
-
-
0036045901
-
-
A new efficient algorithm for computing Gröbner bases without reduction to zero F5. In: International Symposium on Symbolic and Algebraic Computation Symposium, ISSAC 2002, Villeneuve d'Ascq, France. revised version downloaded from.
-
Faugère, J.-C., 2002. A new efficient algorithm for computing Gröbner bases without reduction to zero F5. In: International Symposium on Symbolic and Algebraic Computation Symposium, ISSAC 2002, Villeneuve d'Ascq, France. pp. 75-82, revised version downloaded from http://fgbrs.lip6.fr/jcf/Publications/index.html.
-
(2002)
, pp. 75-82
-
-
Faugère, J.-C.1
-
8
-
-
77957253903
-
-
Cryptochallenge 11 is broken or an efficient attack of the C* cryptosystem. Tech. rep., LIP6/Universitè Paris.
-
Faugère, J.-C., 2005. Cryptochallenge 11 is broken or an efficient attack of the C* cryptosystem. Tech. rep., LIP6/Universitè Paris.
-
(2005)
-
-
Faugère, J.-C.1
-
11
-
-
77957271167
-
-
Singular 3-1-0. A Computer Algebra System for Polynomial Computations, Centre for Computer Algebra, University of Kaiserslautern.
-
Greuel, G.-M., Pfister, G., Schönemann, H., 2009. Singular 3-1-0. A Computer Algebra System for Polynomial Computations, Centre for Computer Algebra, University of Kaiserslautern, http://www.singular.uni-kl.de.
-
(2009)
-
-
Greuel, G.-M.1
Pfister, G.2
Schönemann, H.3
-
12
-
-
85034440461
-
Gröbner bases, Gaussian elimination, and resolution of systems of algebraic equations
-
Springer, J.A. van Hulzen (Ed.) EUROCAL'83, European Computer Algebra Conference
-
Lazard D. Gröbner bases, Gaussian elimination, and resolution of systems of algebraic equations. LNCS 1983, vol. 162:146-156. Springer. J.A. van Hulzen (Ed.).
-
(1983)
LNCS
, vol.162
, pp. 146-156
-
-
Lazard, D.1
-
14
-
-
70350716401
-
Solving Polynomial Equation Systems II: Macaulay's paradigm and Gröbner technology
-
Cambridge University Press, Cambridge
-
Mora T. Solving Polynomial Equation Systems II: Macaulay's paradigm and Gröbner technology. Encyclopedia of Mathematics and its Applications 2005, vol.~99. Cambridge University Press, Cambridge.
-
(2005)
Encyclopedia of Mathematics and its Applications
, vol.99
-
-
Mora, T.1
-
15
-
-
77957252720
-
-
Faugère's F5 Algorithm Revisited. Diplom. Thesis, Technische Universität Darmstadt, Germany.
-
Stegers, T., 2006. Faugère's F5 Algorithm Revisited. Diplom. Thesis, Technische Universität Darmstadt, Germany.
-
(2006)
-
-
Stegers, T.1
-
16
-
-
77957257863
-
-
Sage: Open Source Mathematical Software (Version 3.1.1). The Sage Group.
-
Stein, W., 2008. Sage: Open Source Mathematical Software (Version 3.1.1). The Sage Group, http://www.sagemath.org.
-
(2008)
-
-
Stein, W.1
|