메뉴 건너뛰기




Volumn 217, Issue 4, 2010, Pages 1733-1740

Soliton solutions for (2 + 1)-dimensional and (3 + 1)-dimensional K(m, n) equations

Author keywords

Conserved quantity; Multi dimensional K(m, n) equation; Perturbation; Soliton solution

Indexed keywords

ANALYTICAL EXPRESSIONS; BRIGHT SOLITONS; CONSERVED QUANTITY; EXTENDED FORM; HIGHER ORDER; MODEL COEFFICIENT; MULTI-DIMENSIONAL K(M, N) EQUATION; NONLINEAR DISPERSIVE; NONLINEAR TERMS; PERTURBATION; PHYSICAL PARAMETERS; SOLITARY WAVE; SOLITON SOLUTION; SOLITON SOLUTIONS;

EID: 77957269707     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2009.11.025     Document Type: Article
Times cited : (12)

References (21)
  • 1
    • 34249735366 scopus 로고    scopus 로고
    • New solitons and kink solutions for the Gardner equation
    • A.M. Wazwaz New solitons and kink solutions for the Gardner equation Commun. Nonlinear Sci. Numer. Simul. 12 2007 1395
    • (2007) Commun. Nonlinear Sci. Numer. Simul. , vol.12 , pp. 1395
    • Wazwaz, A.M.1
  • 2
    • 0038788960 scopus 로고    scopus 로고
    • Two simple ansätze for obtaining exact solutions of high dispersive nonlinear Schrödinger equations
    • S.L. Palacios Two simple ansätze for obtaining exact solutions of high dispersive nonlinear Schrödinger equations Chaos Solitons Fractals 19 2004 203
    • (2004) Chaos Solitons Fractals , vol.19 , pp. 203
    • Palacios, S.L.1
  • 3
    • 0343341715 scopus 로고    scopus 로고
    • Black optical solitons for media with parabolic nonlinearity law in the presence of fourth order dispersion
    • S.L. Palacios, and J.M. Fernandez-Diaz Black optical solitons for media with parabolic nonlinearity law in the presence of fourth order dispersion Opt. Commun. 178 2000 457
    • (2000) Opt. Commun. , vol.178 , pp. 457
    • Palacios, S.L.1    Fernandez-Diaz, J.M.2
  • 5
    • 0040962316 scopus 로고    scopus 로고
    • An algebraic method for solving the KdV equation (I). Two-parameter solution family
    • P. Zu-Liang, Z. Ke-Jie, and Z. Shen-Qi An algebraic method for solving the KdV equation (I). Two-parameter solution family Chaos Solitons Fractals 9 10 1998 1733
    • (1998) Chaos Solitons Fractals , vol.9 , Issue.10 , pp. 1733
    • Zu-Liang, P.1    Ke-Jie, Z.2    Shen-Qi, Z.3
  • 6
    • 0029185175 scopus 로고
    • A novel approach to solving the nonlinear Schrödinger equation by the coupled amplitude-phase formulation
    • M. Du, A.K. Chan, and C.K. Chui A novel approach to solving the nonlinear Schrödinger equation by the coupled amplitude-phase formulation IEEE J. Quantum Electron. 31 1 1995 177
    • (1995) IEEE J. Quantum Electron. , vol.31 , Issue.1 , pp. 177
    • Du, M.1    Chan, A.K.2    Chui, C.K.3
  • 7
    • 0001229736 scopus 로고
    • Solitary wave solutions of nonlinear wave equations
    • W. Malfliet Solitary wave solutions of nonlinear wave equations Am. J. Phys. 60 7 1992 650
    • (1992) Am. J. Phys. , vol.60 , Issue.7 , pp. 650
    • Malfliet, W.1
  • 9
    • 0036489548 scopus 로고    scopus 로고
    • Bright and dark optical solitons in fiber media with higher-order effects
    • DOI 10.1016/S0960-0779(00)00278-2, PII S0960077900002782
    • K. Nakkeeran Bright and dark optical solitons in fiber media with higher-order effects Chaos Solitons Fractals 13 2002 673 (Pubitemid 32951313)
    • (2002) Chaos, Solitons and Fractals , vol.13 , Issue.4 , pp. 673-679
    • Nakkeeran, K.1
  • 10
    • 33751423582 scopus 로고    scopus 로고
    • A sub-ODE method for finding exact solutions of a generalized KdV-mKdV equation with high-order nonlinear terms
    • DOI 10.1016/j.physleta.2006.09.022, PII S0375960106014344
    • X. Li, and M. Wang A sub-ODE method for finding exact solutions of a generalized KdV-mKdV equation with high-order nonlinear terms Phys. Lett. A 361 2007 115 (Pubitemid 44821588)
    • (2007) Physics Letters, Section A: General, Atomic and Solid State Physics , vol.361 , Issue.1-2 , pp. 115-118
    • Li, X.1    Wang, M.2
  • 11
    • 67649213967 scopus 로고    scopus 로고
    • Sub-ODE method and soliton solutions for the variable-coefficient mKdV equation
    • H. Triki, and A.M. Wazwaz Sub-ODE method and soliton solutions for the variable-coefficient mKdV equation Appl. Math. Comput. 214 2009 370
    • (2009) Appl. Math. Comput. , vol.214 , pp. 370
    • Triki, H.1    Wazwaz, A.M.2
  • 12
    • 12044253199 scopus 로고
    • Compactons: Solitons with finite wavelengths
    • P. Rosenau, and J.M. Hyman Compactons: solitons with finite wavelengths Phys. Rev. Lett. 70 5 1993 564
    • (1993) Phys. Rev. Lett. , vol.70 , Issue.5 , pp. 564
    • Rosenau, P.1    Hyman, J.M.2
  • 13
    • 0036462771 scopus 로고    scopus 로고
    • New solitary-wave special solutions with compact support for the nonlinear dispersive K(m,n) equations
    • A.M. Wazwaz New solitary-wave special solutions with compact support for the nonlinear dispersive K (m, n ) equations Chaos Solitons Fractals 13 2002 321
    • (2002) Chaos Solitons Fractals , vol.13 , pp. 321
    • Wazwaz, A.M.1
  • 14
    • 0036028182 scopus 로고    scopus 로고
    • Exact special solutions with solitary patterns for the nonlinear dispersive K(m,n) equations
    • A.M. Wazwaz Exact special solutions with solitary patterns for the nonlinear dispersive K (m, n ) equations Chaos Solitons Fractals 13 2002 161
    • (2002) Chaos Solitons Fractals , vol.13 , pp. 161
    • Wazwaz, A.M.1
  • 15
    • 0036526003 scopus 로고    scopus 로고
    • Compactons dispersive structures for variants of the K(n,n) and the KP equations
    • A.M. Wazwaz Compactons dispersive structures for variants of the K (n, n ) and the KP equations Chaos Solitons Fractals 13 2002 1053
    • (2002) Chaos Solitons Fractals , vol.13 , pp. 1053
    • Wazwaz, A.M.1
  • 16
    • 44249116582 scopus 로고    scopus 로고
    • 1-Soliton solution of the K(m,n) equation with generalized evolution
    • Anjan Biswas 1-Soliton solution of the K (m, n ) equation with generalized evolution Phys. Lett. A 372 2008 4601
    • (2008) Phys. Lett. A , vol.372 , pp. 4601
    • Biswas, A.1
  • 17
    • 67349138611 scopus 로고    scopus 로고
    • Bright and dark soliton solutions for a K(m,n) equation with t-dependent coefficients
    • H. Triki, and A.M. Wazwaz Bright and dark soliton solutions for a K (m, n ) equation with t-dependent coefficients Phys. Lett. A 373 2009 2162
    • (2009) Phys. Lett. A , vol.373 , pp. 2162
    • Triki, H.1    Wazwaz, A.M.2
  • 18
    • 0036644409 scopus 로고    scopus 로고
    • General compactons solutions and solitary patterns solutions for modified nonlinear dispersive equations mK(n,n) in higher dimensional spaces
    • A.M. Wazwaz General compactons solutions and solitary patterns solutions for modified nonlinear dispersive equations mK (n, n ) in higher dimensional spaces Math. Comput. Simul. 59 2002 519
    • (2002) Math. Comput. Simul. , vol.59 , pp. 519
    • Wazwaz, A.M.1
  • 19
    • 50049125795 scopus 로고    scopus 로고
    • 1-Soliton solution of (1 + 2) dimensional nonlinear Schrödinger's equation in dual-power law media
    • Anjan Biswas 1-Soliton solution of (1 + 2) dimensional nonlinear Schrödinger's equation in dual-power law media Phys. Lett. A 372 2008 5941
    • (2008) Phys. Lett. A , vol.372 , pp. 5941
    • Biswas, A.1
  • 21
    • 56149124076 scopus 로고    scopus 로고
    • A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions
    • M. Dehghan, and A. Shokri A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions Comput. Math. Simul. 79 2008 700
    • (2008) Comput. Math. Simul. , vol.79 , pp. 700
    • Dehghan, M.1    Shokri, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.