-
1
-
-
42649131393
-
New exact solutions for the (2 + 1)-dimensional generalized Broer-Kaup system
-
DOI 10.1016/j.amc.2007.10.012, PII S0096300307010326
-
D.C. Lu, and B.J. Hong New exact solutions for the (2+1)-dimensional generalized Broer-Kaup system Appl. Math. Comput. 199 2008 572 580 (Pubitemid 351601862)
-
(2008)
Applied Mathematics and Computation
, vol.199
, Issue.2
, pp. 572-580
-
-
Lu, D.1
Hong, B.2
-
2
-
-
0030284901
-
An automated tanh-function method for finding solitary wave solutions to nonlinear evolution equations
-
E.J. Parkes, and B.R. Duffy An automated tanh-function method for finding solitary wave solutions to nonlinear evolution equations Comput. Phys. Commun. 98 1996 288 296
-
(1996)
Comput. Phys. Commun.
, vol.98
, pp. 288-296
-
-
Parkes, E.J.1
Duffy, B.R.2
-
3
-
-
30244524644
-
Applications of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics
-
M.L. Wang, Y.B. Zhou, and Z.B. Li Applications of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics Phys. Lett. A 216 1996 67 75
-
(1996)
Phys. Lett. A
, vol.216
, pp. 67-75
-
-
Wang, M.L.1
Zhou, Y.B.2
Li, Z.B.3
-
4
-
-
33745177020
-
Exp-function method for nonlinear wave equations
-
DOI 10.1016/j.chaos.2006.03.020, PII S0960077906002293
-
J.H. He, and X.H. Wu Exp-function method for nonlinear wave equations Chaos, Solitons & Fractals 30 3 2006 700 708 (Pubitemid 43903182)
-
(2006)
Chaos, Solitons and Fractals
, vol.30
, Issue.3
, pp. 700-708
-
-
He, J.-H.1
Wu, X.-H.2
-
5
-
-
34249786250
-
Multiple-soliton solutions for the KP equation by Hirota's bilinear method and by the tanh-coth method
-
A.M. Wazwaz Multiple-soliton solutions for the KP equation by Hirota's bilinear method and by the tanh-coth method Appl. Math. Comput. 190 1 2007 633 640
-
(2007)
Appl. Math. Comput.
, vol.190
, Issue.1
, pp. 633-640
-
-
Wazwaz, A.M.1
-
6
-
-
6444239796
-
Nonlinear variants of KdV and KP equations with compactons, solitons and periodic solutions
-
DOI 10.1016/j.cnsns.2004.01.001, PII S1007570404000085
-
A.M. Wazwaz Nonlinear variants of KdV and KP equations with compactons, solitons and periodic solutions Commun. Nonlinear Sci. Numer. Simul. 10 4 2005 451 463 (Pubitemid 39408098)
-
(2005)
Communications in Nonlinear Science and Numerical Simulation
, vol.10
, Issue.4
, pp. 451-463
-
-
Wazwaz, A.-M.1
-
7
-
-
34249735366
-
New solitons and kink solutions for the Gardner equation
-
DOI 10.1016/j.cnsns.2005.11.007, PII S1007570405001826
-
Abdul-Majid Wazwaz New solitons and kink solutions for the Gardner equation Commun. Nonlinear Sci. Numer. Simul. 12 2007 1395 1404 (Pubitemid 46832139)
-
(2007)
Communications in Nonlinear Science and Numerical Simulation
, vol.12
, Issue.8
, pp. 1395-1404
-
-
Wazwaz, A.-M.1
-
8
-
-
33751423582
-
A sub-ODE method for finding exact solutions of a generalized KdV-mKdV equation with high-order nonlinear terms
-
DOI 10.1016/j.physleta.2006.09.022, PII S0375960106014344
-
X.Z. Li, and M.L. Wang A sub-ODE method for finding exact solutions of a generalized KdV-mKdV equation with high-order nonlinear terms Phys. Lett. A 361 2007 115 118 (Pubitemid 44821588)
-
(2007)
Physics Letters, Section A: General, Atomic and Solid State Physics
, vol.361
, Issue.1-2
, pp. 115-118
-
-
Li, X.1
Wang, M.2
-
9
-
-
42749097103
-
The improved sub-ODE method for a generalized KdV-mKdV equation with nonlinear terms of any order
-
S. Zhang, W. Wang, and J.L. Tong The improved sub-ODE method for a generalized KdV-mKdV equation with nonlinear terms of any order Phys. Lett. A 372 2008 3808 3813
-
(2008)
Phys. Lett. A
, vol.372
, pp. 3808-3813
-
-
Zhang, S.1
Wang, W.2
Tong, J.L.3
-
10
-
-
11144315347
-
Exact solutions for two nonlinear wave equations with nonlinear terms of any order
-
DOI 10.1016/S1007-5704(03)00121-7, PII S1007570403001217
-
Y. Chen, B. Li, and H.Q. Zhang Exact solutions for two nonlinear wave equations with nonlinear terms of any order Commun. Nonlinear Sci. Numer. Simul. 10 2005 133 138 (Pubitemid 40032221)
-
(2005)
Communications in Nonlinear Science and Numerical Simulation
, vol.10
, Issue.2
, pp. 133-138
-
-
Chen, Y.1
Li, B.2
Zhang, H.3
-
11
-
-
33947154208
-
Elliptic solutions to a generalized BBM equation
-
J. Nickel Elliptic solutions to a generalized BBM equation Phys. Lett. A 364 2007 221 226
-
(2007)
Phys. Lett. A
, vol.364
, pp. 221-226
-
-
Nickel, J.1
|