-
1
-
-
16744365634
-
Symmetric stable processes in cones
-
BAÑUELOS, R. and BOGDAN, K. (2004). Symmetric stable processes in cones. Potential Anal. 21 263-288.
-
(2004)
Potential Anal.
, vol.21
, pp. 263-288
-
-
Bañuelos, R.1
Bogdan, K.2
-
3
-
-
58449102768
-
Heat kernel upper bounds for jump processes and the first exit time
-
BARLOW, M. T., GRIGOR'YAN, A. and KUMAGAI, T. (2009). Heat kernel upper bounds for jump processes and the first exit time. J. Reine Angew. Math. 626 135-157.
-
(2009)
J. Reine Angew. Math.
, vol.626
, pp. 135-157
-
-
Barlow, M.T.1
Grigor'yan, A.2
Kumagai, T.3
-
5
-
-
0000760840
-
On the distribution of first hits for the symmetric stable processes
-
BLUMENTHAL, R. M., GETOOR, R. K. and RAY, D. B. (1961). On the distribution of first hits for the symmetric stable processes. Trans. Amer. Math. Soc. 99 540-554.
-
(1961)
Trans. Amer. Math. Soc.
, vol.99
, pp. 540-554
-
-
Blumenthal, R.M.1
Getoor, R.K.2
Ray, D.B.3
-
6
-
-
0034652877
-
Sharp estimates for the Green function in Lipschitz domains
-
BOGDAN, K. (2000). Sharp estimates for the Green function in Lipschitz domains. J. Math. Anal. Appl. 243 326-337.
-
(2000)
J. Math. Anal. Appl.
, vol.243
, pp. 326-337
-
-
Bogdan, K.1
-
7
-
-
0002020384
-
Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains
-
BOGDAN, K. and BYCZKOWSKI, T. (1999). Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains. Studia Math. 133 53-92.
-
(1999)
Studia Math.
, vol.133
, pp. 53-92
-
-
Bogdan, K.1
Byczkowski, T.2
-
8
-
-
0041862067
-
Potential theory of Schrödinger operator based on fractional Laplacian
-
BOGDAN, K. and BYCZKOWSKI, T. (2000). Potential theory of Schrödinger operator based on fractional Laplacian. Probab. Math. Statist. 20 293-335.
-
(2000)
Probab. Math. Statist.
, vol.20
, pp. 293-335
-
-
Bogdan, K.1
Byczkowski, T.2
-
9
-
-
68749108285
-
-
(P. Graczyk and A. Stos, eds.). Springer, Berlin
-
BOGDAN, K., BYCZKOWSKI, T., KULCZYCKI, T., RYZNAR, M., SONG, R. and VONDRAČEK, Z. (2009). Potential Analysis of Stable Processes and Its Extensions (P. GRACZYK AND A. STOS, eds.). Lecture Notes in Math. 1980. Springer, Berlin.
-
(2009)
Potential Analysis of Stable Processes and Its Extensions. Lecture Notes in Math.
, vol.1980
-
-
Bogdan, K.1
Byczkowski, T.2
Kulczycki, T.3
Ryznar, M.4
Song, R.5
Vondraček, Z.6
-
10
-
-
77956275320
-
Heat kernel of fractional Laplacian in cones
-
BOGDAN, K. and GRZYWNY, T. (2010). Heat kernel of fractional Laplacian in cones. Colloq. Math. 118 365-377.
-
(2010)
Colloq. Math.
, vol.118
, pp. 365-377
-
-
Bogdan, K.1
Grzywny, T.2
-
12
-
-
58149295707
-
Time-dependent Schrödinger perturbations of transition densities
-
BOGDAN, K., HANSEN, W. and JAKUBOWSKI, T. (2008). Time-dependent Schrödinger perturbations of transition densities. Studia Math. 189 235-254.
-
(2008)
Studia Math.
, vol.189
, pp. 235-254
-
-
Bogdan, K.1
Hansen, W.2
Jakubowski, T.3
-
13
-
-
33847191747
-
Estimates of heat kernel of fractional Laplacian perturbed by gradient operators
-
BOGDAN, K. and JAKUBOWSKI, T. (2007). Estimates of heat kernel of fractional Laplacian perturbed by gradient operators. Comm. Math. Phys. 271 179-198.
-
(2007)
Comm. Math. Phys.
, vol.271
, pp. 179-198
-
-
Bogdan, K.1
Jakubowski, T.2
-
15
-
-
0036628268
-
Gradient estimates for harmonic and q-harmonic functions of symmetric stable processes
-
BOGDAN, K., KULCZYCKI, T. and NOWAK, A. (2002). Gradient estimates for harmonic and q-harmonic functions of symmetric stable processes. Illinois J. Math. 46 541-556.
-
(2002)
Illinois J. Math.
, vol.46
, pp. 541-556
-
-
Bogdan, K.1
Kulczycki, T.2
Nowak, A.3
-
16
-
-
0142137750
-
Harnack inequality for stable processes on d-sets
-
BOGDAN, K., STÓS, A. and SZTONYK, P. (2003). Harnack inequality for stable processes on d-sets. Studia Math. 158 163-198.
-
(2003)
Studia Math
, vol.158
, pp. 163-198
-
-
Bogdan, K.1
Stós, A.2
Sztonyk, P.3
-
17
-
-
34548537493
-
Estimates of the potential kernel and Harnack's inequality for the anisotropic fractional Laplacian
-
BOGDAN, K. and SZTONYK, P. (2007). Estimates of the potential kernel and Harnack's inequality for the anisotropic fractional Laplacian. Studia Math. 181 101-123.
-
(2007)
Studia Math
, vol.181
, pp. 101-123
-
-
Bogdan, K.1
Sztonyk, P.2
-
18
-
-
33747852866
-
On Kelvin transformation
-
BOGDAN, K. and ŻAK, T. (2006). On Kelvin transformation. J. Theoret. Probab. 19 89-120.
-
(2006)
J. Theoret. Probab.
, vol.19
, pp. 89-120
-
-
Bogdan, K.1
Zak, T.2
-
19
-
-
77955474529
-
Heat kernel estimates for Dirichlet fractional Laplacian
-
To appear
-
CHEN, Z. Q., KIM, P. and SONG, R. (2010). Heat kernel estimates for Dirichlet fractional Laplacian. J. European Math. Soc. To appear.
-
(2010)
J. European Math. Soc.
-
-
Chen, Z.Q.1
Kim, P.2
Song, R.3
-
20
-
-
36148997271
-
Heat kernel estimates for jump processes of mixed types on metric measure spaces
-
CHEN, Z.-Q. and KUMAGAI, T. (2008). Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab. Theory Related Fields 140 277-317.
-
(2008)
Probab. Theory Related Fields
, vol.140
, pp. 277-317
-
-
Chen, Z.-Q.1
Kumagai, T.2
-
21
-
-
0032335134
-
Estimates on Green functions and Poisson kernels for symmetric stable processes
-
CHEN, Z.-Q. and SONG, R. (1998). Estimates on Green functions and Poisson kernels for symmetric stable processes. Math. Ann. 312 465-501.
-
(1998)
Math. Ann.
, vol.312
, pp. 465-501
-
-
Chen, Z.-Q.1
Song, R.2
-
22
-
-
79952737277
-
Global heat kernel estimates for fractional Laplacians in unbounded open sets
-
DOI: 10.1007/s00440-009-0256-0. To appear
-
CHEN, Z.-Q. and TOKLE, J. (2009). Global heat kernel estimates for fractional Laplacians in unbounded open sets. Probab. Theory Related Fields. DOI: 10.1007/s00440-009-0256-0. To appear.
-
(2009)
Probab. Theory Related Fields
-
-
Chen, Z.-Q.1
Tokle, J.2
-
23
-
-
50249170321
-
Off-diagonal upper estimates for the heat kernel of the Dirichlet forms on metric spaces
-
GRIGOR'YAN, A. and HU, J. (2008). Off-diagonal upper estimates for the heat kernel of the Dirichlet forms on metric spaces. Invent. Math. 174 81-126.
-
(2008)
Invent. Math.
, vol.174
, pp. 81-126
-
-
Grigor'yan, A.1
Hu, J.2
-
24
-
-
50949131174
-
Estimates of Green functions for some perturbations of fractional Laplacian
-
GRZYWNY, T. and RYZNAR, M. (2007). Estimates of Green functions for some perturbations of fractional Laplacian. Illinois J. Math. 51 1409-1438.
-
(2007)
Illinois J. Math.
, vol.51
, pp. 1409-1438
-
-
Grzywny, T.1
Ryznar, M.2
-
25
-
-
43349088493
-
Two-sided optimal bounds for Green functions of half-spaces for relativistic α-stable process
-
GRZYWNY, T. and RYZNAR, M. (2008). Two-sided optimal bounds for Green functions of half-spaces for relativistic α-stable process. Potential Anal. 28 201-239.
-
(2008)
Potential Anal
, vol.28
, pp. 201-239
-
-
Grzywny, T.1
Ryznar, M.2
-
26
-
-
32544439660
-
Global comparison of perturbed Green functions
-
HANSEN, W. (2006). Global comparison of perturbed Green functions. Math. Ann. 334 643-678.
-
(2006)
Math. Ann.
, vol.334
, pp. 643-678
-
-
Hansen, W.1
-
27
-
-
0012896944
-
On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes
-
IKEDA, N. and WATANABE, S. (1962). On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes. J. Math. Kyoto Univ. 2 79-95.
-
(1962)
J. Math. Kyoto Univ.
, vol.2
, pp. 79-95
-
-
Ikeda, N.1
Watanabe, S.2
-
28
-
-
15444379123
-
The estimates for the Green function in Lipschitz domains for the symmetric stable processes
-
JAKUBOWSKI, T. (2002). The estimates for the Green function in Lipschitz domains for the symmetric stable processes. Probab. Math. Statist. 22 419-441.
-
(2002)
Probab. Math. Statist.
, vol.22
, pp. 419-441
-
-
Jakubowski, T.1
-
29
-
-
0002345448
-
Properties of Green function of symmetric stable processes
-
KULCZYCKI, T. (1997). Properties of Green function of symmetric stable processes. Probab. Math. Statist. 17 339-364.
-
(1997)
Probab. Math. Statist.
, vol.17
, pp. 339-364
-
-
Kulczycki, T.1
-
30
-
-
0038434657
-
Intrinsic ultracontractivity for symmetric stable processes
-
KULCZYCKI, T. (1998). Intrinsic ultracontractivity for symmetric stable processes. Bull. Polish Acad. Sci. Math. 46 325-334.
-
(1998)
Bull. Polish Acad. Sci. Math.
, vol.46
, pp. 325-334
-
-
Kulczycki, T.1
-
31
-
-
77956292829
-
Spectral properties of the Cauchy process on half-line and interval
-
DOI: 10.1112/plms/pdq010. To appear
-
KULCZYCKI, T., KWAŚNICKI, M., MAŁECKI, J. and STÓS, A. (2009). Spectral properties of the Cauchy process on half-line and interval. Proc. London Math. Soc. DOI: 10.1112/plms/pdq010. To appear.
-
(2009)
Proc. London Math. Soc.
-
-
Kulczycki, T.1
Kwaśnicki, M.2
Małecki, J.3
Stós, A.4
-
32
-
-
33750166957
-
Intrinsic ultracontractivity of the Feynman-Kac semigroup for relativistic stable processes
-
(electronic)
-
KULCZYCKI, T. and SIUDEJA, B. (2006). Intrinsic ultracontractivity of the Feynman-Kac semigroup for relativistic stable processes. Trans. Amer. Math. Soc. 358 5025-5057 (electronic).
-
(2006)
Trans. Amer. Math. Soc.
, vol.358
, pp. 5025-5057
-
-
Kulczycki, T.1
Siudeja, B.2
-
33
-
-
67349202755
-
Intrinsic ultracontractivity for stable semigroups on unbounded open sets
-
KWAŚNICKI, M. (2009). Intrinsic ultracontractivity for stable semigroups on unbounded open sets. Potential Anal. 31 57-77.
-
(2009)
Potential Anal
, vol.31
, pp. 57-77
-
-
Kwaśnicki, M.1
-
35
-
-
68749084696
-
Sharp estimates of the Green function, the Poisson kernel and the Martin kernel of cones for symmetric stable processes
-
MICHALIK, K. (2006). Sharp estimates of the Green function, the Poisson kernel and the Martin kernel of cones for symmetric stable processes. Hiroshima Math. J. 36 1-21.
-
(2006)
Hiroshima Math. J.
, vol.36
, pp. 1-21
-
-
Michalik, K.1
-
36
-
-
33746166036
-
Green function estimates and Harnack inequality for subordinate Brownian motions
-
RAO, M., SONG, R. and VONDRAČEK, Z. (2006). Green function estimates and Harnack inequality for subordinate Brownian motions. Potential Anal. 25 1-27.
-
(2006)
Potential Anal
, vol.25
, pp. 1-27
-
-
Rao, M.1
Song, R.2
Vondraček, Z.3
-
37
-
-
0011444297
-
Intégrales de Riemann-Liouville et potentiels
-
RIESZ, M. (1938). Intégrales de Riemann-Liouville et potentiels. Acta Sci. Math. Szeged. 9 1-42.
-
(1938)
Acta Sci. Math. Szeged.
, vol.9
, pp. 1-42
-
-
Riesz, M.1
-
39
-
-
33751061422
-
Symmetric stable processes on unbounded domains
-
SIUDEJA, B. (2006). Symmetric stable processes on unbounded domains. Potential Anal. 25 371-386.
-
(2006)
Potential Anal.
, vol.25
, pp. 371-386
-
-
Siudeja, B.1
-
40
-
-
0037983285
-
Boundary Harnack principle for symmetric stable processes
-
SONG, R. and WU, J.-M. (1999). Boundary Harnack principle for symmetric stable processes. J. Funct. Anal. 168 403-427.
-
(1999)
J. Funct. Anal.
, vol.168
, pp. 403-427
-
-
Song, R.1
Wu, J.-M.2
-
41
-
-
0038297255
-
Gaussian estimates in Lipschitz domains
-
VAROPOULOS, N. T. (2003). Gaussian estimates in Lipschitz domains. Canad. J. Math. 55 401-431.
-
(2003)
Canad. J. Math.
, vol.55
, pp. 401-431
-
-
Varopoulos, N.T.1
-
42
-
-
0036647454
-
The boundary behavior of heat kernels of Dirichlet Laplacians
-
ZHANG, Q. S. (2002). The boundary behavior of heat kernels of Dirichlet Laplacians. J. Differential Equations 182 416-430.
-
(2002)
J. Differential Equations
, vol.182
, pp. 416-430
-
-
Zhang, Q.S.1
-
43
-
-
0000916784
-
Green function for Schrödinger operator and conditioned Feynman-Kac gauge
-
ZHAO, Z. X. (1986). Green function for Schrödinger operator and conditioned Feynman-Kac gauge. J. Math. Anal. Appl. 116 309-334.
-
(1986)
J. Math. Anal. Appl.
, vol.116
, pp. 309-334
-
-
Zhao, Z.X.1
|