-
1
-
-
84880203756
-
Laplacian eigenmaps and spectral techniques for embedding and clustering
-
MIT Press, Cambridge
-
BELKIN, M., and P. NIYOGI: Laplacian eigenmaps and spectral techniques for embedding and clustering. - Advances in Neural Information Processing Systems 14 (NIPS 2001), MIT Press, Cambridge, 2001, 585-591.
-
(2001)
Advances in Neural Information Processing Systems 14 (NIPS 2001)
, pp. 585-591
-
-
Belkin, M.1
Niyogi, P.2
-
2
-
-
0042378381
-
Laplacian eigenmaps for dimensionality reduction and data representation
-
BELKIN, M., and P. NIYOGI: Laplacian eigenmaps for dimensionality reduction and data representation. - Neural Computation 6:15, 2003, 1373-1396.
-
(2003)
Neural Computation
, vol.6
, Issue.15
, pp. 1373-1396
-
-
Belkin, M.1
Niyogi, P.2
-
5
-
-
0001199139
-
Embedding Riemannian manifolds by their heat kernel
-
BÉRARD, P.B., G. BESSON, and S. GALLOT: Embedding Riemannian manifolds by their heat kernel. - Geom. Funct. Anal. 4:4, 1994, 374-398.
-
(1994)
Geom. Funct. Anal.
, vol.4
, Issue.4
, pp. 374-398
-
-
Bérard, P.B.1
Besson, G.2
Gallot, S.3
-
6
-
-
0035348998
-
Spatio-temporal pattern formation on spherical surfaces: Numerical simulation and application to solid tumor growth
-
CHAPLAIN, M., M. GANESH, and I. GRAHAM: Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumor growth. - J. Math. Biol. 42, 2001, 387-423.
-
(2001)
J. Math. Biol.
, vol.42
, pp. 387-423
-
-
Chaplain, M.1
Ganesh, M.2
Graham, I.3
-
7
-
-
20344362744
-
A lower bound for the smallest eigenvalue of the Laplacian
-
edited by R. C. Gunning, Princeton Univ. Press
-
CHEEGER, J.: A lower bound for the smallest eigenvalue of the Laplacian. - In: Problems in Analysis, edited by R. C. Gunning, Princeton Univ. Press, 195-199.
-
Problems in Analysis
, pp. 195-199
-
-
Cheeger, J.1
-
8
-
-
0003365565
-
Spectral graph theory
-
Published for the Conference Board of the Mathematical Sciences, Washington, DC
-
CHUNG, F. R. K.: Spectral graph theory. - CBMS Regional Conference Series in Mathematics 92, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1997.
-
(1997)
CBMS Regional Conference Series in Mathematics
, vol.92
-
-
Chung, F.R.K.1
-
9
-
-
55149095503
-
Diffusion maps, reduction coordinates and low dimensional representation of stochastic systems
-
COIFMAN, R. R., I. G. KEVREKIDIS, S. LAFON, M. MAGGIONI, and B. NADLER: Diffusion maps, reduction coordinates and low dimensional representation of stochastic systems. - Multiscale Model. Simul. 7:2, 2008, 842-864.
-
(2008)
Multiscale Model. Simul.
, vol.7
, Issue.2
, pp. 842-864
-
-
Coifman, R.R.1
Kevrekidis, I.G.2
Lafon, S.3
Maggioni, M.4
Nadler, B.5
-
11
-
-
33745398604
-
Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions
-
COIFMAN, R. R., and S. LAFON: Geometric harmonics: a novel tool for multiscale out-of-sample extension of empirical functions. - Appl. Comput. Harmon. Anal. 21:1, 2006, 31-52.
-
(2006)
Appl. Comput. Harmon. Anal.
, vol.21
, Issue.1
, pp. 31-52
-
-
Coifman, R.R.1
Lafon, S.2
-
12
-
-
19644394100
-
Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps
-
COIFMAN, R.R., S. LAFON, A.B. LEE, M. MAGGIONI, B. NADLER, F. WARNER, and S. W. ZUCKER: Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. - Proc. Natl. Acad. Sci. USA 102:21, 2005, 7426-7431.
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, Issue.21
, pp. 7426-7431
-
-
Coifman, R.R.1
Lafon, S.2
Lee, A.B.3
Maggioni, M.4
Nadler, B.5
Warner, F.6
Zucker, S.W.7
-
13
-
-
19644366699
-
Geometric diffusions as a tool for harmonic analysis and structure definition of data: Multiscale methods
-
COIFMAN, R.R., S. LAFON, A.B. LEE, M. MAGGIONI, B. NADLER, F. WARNER, and S. W. ZUCKER: Geometric diffusions as a tool for harmonic analysis and structure definition of data: Multiscale methods. - Proc. Natl. Acad. Sci. USA 102:21, 2005, 7432-7437.
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, Issue.21
, pp. 7432-7437
-
-
Coifman, R.R.1
Lafon, S.2
Lee, A.B.3
Maggioni, M.4
Nadler, B.5
Warner, F.6
Zucker, S.W.7
-
15
-
-
0003035519
-
Spectral properties of compact manifolds and changes of metric
-
DAVIES, E. B.: Spectral properties of compact manifolds and changes of metric. - Amer. J. Math. 112:1, 1990, 15-39.
-
(1990)
Amer. J. Math.
, vol.112
, Issue.1
, pp. 15-39
-
-
Davies, E.B.1
-
17
-
-
85056067474
-
Growth and geometry of eigenfunctions of the Laplacian
-
Dekker, New York
-
DONNELLY, H., and C. FEFFERMAN: Growth and geometry of eigenfunctions of the Laplacian. - In: Analysis and Partial Differential Equations, Lecture Notes in Pure and Appl. Math. 122, Dekker, New York, 1990, 635-655.
-
(1990)
Analysis and Partial Differential Equations, Lecture Notes in Pure and Appl. Math.
, vol.122
, pp. 635-655
-
-
Donnelly, H.1
Fefferman, C.2
-
18
-
-
2342600478
-
When does isomap recover natural parameterization of families of articulated images?
-
Department of Statistics, Stanford University
-
DONOHO, D. L., and C. GRIMES: When does isomap recover natural parameterization of families of articulated images? - Technical Report 2002-27, Department of Statistics, Stanford University, 2002.
-
(2002)
Technical Report 2002-27
-
-
Donoho, D.L.1
Grimes, C.2
-
19
-
-
0037948870
-
Hessian eigenmaps: New locally linear embedding techniques for high-dimensional data
-
DONOHO, D. L., and C. GRIMES: Hessian eigenmaps: new locally linear embedding techniques for high-dimensional data. - Proc. Natl. Acad. Sci. USA 100:10, 2003, 5591-5596.
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, Issue.10
, pp. 5591-5596
-
-
Donoho, D.L.1
Grimes, C.2
-
20
-
-
77957894514
-
Multiscale geometric analysis for 3-d catalogues
-
Stanford Univ.
-
DONOHO, D. L., O. LEVI, J.-L. STARCK, and V.J. MARTINEZ: Multiscale geometric analysis for 3-d catalogues. - Technical Report, Stanford Univ., 2002.
-
(2002)
Technical Report
-
-
Donoho, D.L.1
Levi, O.2
Starck, J.-L.3
Martinez, V.J.4
-
24
-
-
0000539082
-
The Green function for uniformly elliptic equations
-
GRÜTER, M., and K.-O. WIDMAN: The Green function for uniformly elliptic equations. -Manuscripta Math. 37, 1982, 303-342.
-
(1982)
Manuscripta Math.
, vol.37
, pp. 303-342
-
-
Grüter, M.1
Widman, K.-O.2
-
25
-
-
15044358511
-
Face recognition using Laplacian faces
-
HE, X., S. YAN, Y. HU, P. NIYOGI, and H.-J. ZHANG: Face recognition using Laplacian faces. - IEEE Trans. Pattern Analysis and Machine Intelligence 27:3, 2005, 328-340.
-
(2005)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.27
, Issue.3
, pp. 328-340
-
-
He, X.1
Yan, S.2
Hu, Y.3
Niyogi, P.4
Zhang, H.-J.5
-
26
-
-
0000620718
-
The essential spectrum of Neumann Laplacians on some bounded singular domains
-
HEMPEL, R., L. SECO, and B. SIMON: The essential spectrum of Neumann Laplacians on some bounded singular domains. - J. Funct. Anal. 102:2, 1991, 448-483.
-
(1991)
J. Funct. Anal.
, vol.102
, Issue.2
, pp. 448-483
-
-
Hempel, R.1
Seco, L.2
Simon, B.3
-
27
-
-
41149151737
-
Manifold parametrizations by eigenfunctions of the Laplacian and heat kernels
-
JONES, P. W., M. MAGGIONI, and R. SCHUL: Manifold parametrizations by eigenfunctions of the Laplacian and heat kernels. - Proc. Natl. Acad. Sci. USA 105:6, 2008, 1803-1808.
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, Issue.6
, pp. 1803-1808
-
-
Jones, P.W.1
Maggioni, M.2
Schul, R.3
-
29
-
-
26444490324
-
Diffusion maps and geometric harmonics
-
PhD thesis, Yale University, Dept. of Mathematics & Applied Mathematics
-
LAFON, S.: Diffusion maps and geometric harmonics. - PhD thesis, Yale University, Dept. of Mathematics & Applied Mathematics, 2004.
-
(2004)
-
-
Lafon, S.1
-
30
-
-
0032968492
-
Three dimensional filtering approach to brain potential mapping
-
LO, P.-C.: Three dimensional filtering approach to brain potential mapping. - IEEE Trans. on Biomedical Engineering 46:5, 1999, 574-583.
-
(1999)
IEEE Trans. on Biomedical Engineering
, vol.46
, Issue.5
, pp. 574-583
-
-
Lo, P.-C.1
-
31
-
-
77957889904
-
Simultaneous learning of representation and control in continuous domains
-
AAAI Press
-
MAHADEVAN, S., K. FERGUSON, S. OSENTOSKI, and M. MAGGIONI: Simultaneous learning of representation and control in continuous domains. - In: Association for the Advancement of Artificial Intelligence (AAAI), AAAI Press, 2006.
-
(2006)
Association for the Advancement of Artificial Intelligence (AAAI)
-
-
Mahadevan, S.1
Ferguson, K.2
Osentoski, S.3
Maggioni, M.4
-
33
-
-
34547128104
-
Sharp remainder estimates in the weyl formula for the Neumann Laplacian on a class of planar regions
-
NETRUSOV, YU.: Sharp remainder estimates in the weyl formula for the Neumann Laplacian on a class of planar regions. - J. Funct. Anal. 250:1, 2007, 21-41.
-
(2007)
J. Funct. Anal.
, vol.250
, Issue.1
, pp. 21-41
-
-
Netrusov, Y.1
-
34
-
-
11944252724
-
Weyl asymptotic formula for the Laplacian on domains with rough boundaries
-
NETRUSOV, YU., and YU. SAFAROV: Weyl asymptotic formula for the Laplacian on domains with rough boundaries. - Comm. Math. Phys. 253:2, 2005, 481-509.
-
(2005)
Comm. Math. Phys.
, vol.253
, Issue.2
, pp. 481-509
-
-
Netrusov, Y.1
Safarov, Y.2
-
36
-
-
34547995167
-
Regression and regularization on large graphs
-
University of Chicago
-
NIYOGI, P., I. MATVEEVA, and M. BELKIN: Regression and regularization on large graphs. -Technical Report, University of Chicago, 2003.
-
(2003)
Technical Report
-
-
Niyogi, P.1
Matveeva, I.2
Belkin, M.3
-
38
-
-
0039443127
-
Univalent functions
-
With a chapter on quadratic differentials by G. Jensen, Mathematische Lehrbücher, Band XXV
-
POMMERENKE, CH.: Univalent functions. - Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by G. Jensen, Mathematische Lehrbücher, Band XXV.
-
(1975)
Vandenhoeck & Ruprecht, Göttingen
-
-
Pommerenke, C.1
-
39
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
ROWEIS, S. T., and L. K. SAUL: Nonlinear dimensionality reduction by locally linear embedding. - Science 290, 2000, 2323-2326.
-
(2000)
Science
, vol.290
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
40
-
-
33846672824
-
-
MIT Press
-
SAUL, L. K., K. Q. WEINBERGER, F. H. HAM, F. SHA, and D. D. LEE: Spectral methods for dimensionality reduction (chapter Semisupervised learning). - MIT Press, 2006.
-
(2006)
Spectral methods for dimensionality reduction (chapter Semisupervised learning)
-
-
Saul, L.K.1
Weinberger, K.Q.2
Ham, F.H.3
Sha, F.4
Lee, D.D.5
-
41
-
-
31844449616
-
Analysis and extension of spectral methods for nonlinear dimensionality reduction
-
SHA, F., and L. K. SAUL: Analysis and extension of spectral methods for nonlinear dimensionality reduction. - In: Proc. International Conference on Machine Learning, 2005, 785-792.
-
(2005)
Proc. International Conference on Machine Learning
, pp. 785-792
-
-
Sha, F.1
Saul, L.K.2
-
44
-
-
33846158421
-
q bounds on spectral projectors for low regularity metrics
-
q bounds on spectral projectors for low regularity metrics. - Math. Res. Lett. 13:6, 2006, 967-974.
-
(2006)
Math. Res. Lett.
, vol.13
, Issue.6
, pp. 967-974
-
-
Smith, H.F.1
-
45
-
-
33750533144
-
1,1 metrics
-
1069-1103
-
1,1 metrics. - Amer. J. Math. 128, 2006, 1069- 1103.
-
(2006)
Amer. J. Math.
, vol.128
-
-
Smith, H.F.1
-
46
-
-
0036323609
-
Eigenfunction and Bochner-Riesz estimates on manifolds with boundary
-
SOGGE, C. D.: Eigenfunction and Bochner-Riesz estimates on manifolds with boundary. -Math. Res. Lett. 9, 2002, 205-216.
-
(2002)
Math. Res. Lett.
, vol.9
, pp. 205-216
-
-
Sogge, C.D.1
-
47
-
-
0030381960
-
Spectral partitioning works: Planar graphs and finite element meshes
-
SPIELMAN, D. A., and S. H. TENG: Spectral partitioning works: Planar graphs and finite element meshes. - Foundations of Computer Science, 1996.
-
(1996)
Foundations of Computer Science
-
-
Spielman, D.A.1
Teng, S.H.2
-
48
-
-
77952015836
-
Partial differential equations for probabilists
-
Cambridge Univ. Press, Cambridge
-
STROOCK, D.W.: Partial differential equations for probabilists. - Cambridge Stud. Adv. Math. 112, Cambridge Univ. Press, Cambridge, 2008.
-
(2008)
Cambridge Stud. Adv. Math.
, vol.112
-
-
Stroock, D.W.1
-
49
-
-
0000576153
-
Diffusion semigroups corresponding to uniformly elliptic divergence form operators
-
STROOCK. D. W.: Diffusion semigroups corresponding to uniformly elliptic divergence form operators. - Séminaire de Probabilités 22, 1988, 316-347.
-
(1988)
Séminaire de Probabilités
, vol.22
, pp. 316-347
-
-
Stroock, D.W.1
-
50
-
-
35748936335
-
A general framework for adaptive regularization based on diffusion processes on graphs
-
Yale Univ., (submitted)
-
SZLAM, A. D., M. MAGGIONI, and R.R. COIFMAN: A general framework for adaptive regularization based on diffusion processes on graphs. - Technical Report YALE/DCS/TR1365, Yale Univ., 2006 (submitted).
-
(2006)
Technical Report YALE/DCS/TR1365
-
-
Szlam, A.D.1
Maggioni, M.2
Coifman, R.R.3
-
51
-
-
30844434804
-
: Diffusion-driven multiscale analysis on manifolds and graphs: Top-down and bottom-up constructions
-
SZLAM, A. D., M. MAGGIONI, R. R. COIFMAN, and J. C. BREMER JR.: Diffusion-driven multiscale analysis on manifolds and graphs: top-down and bottom-up constructions. - In: Proc. SPIE 5914-1, 2005.
-
(2005)
Proc. SPIE 5914-1
-
-
Szlam, A.D.1
Maggioni, M.2
Coifman, R.R.3
Bremer J.C., Jr.4
-
52
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
TENENBAUM, J.B., V. DE SILVA, and J. C. LANGFORD: A global geometric framework for nonlinear dimensionality reduction. - Science 290, 2000, 2319-2323.
-
(2000)
Science
, vol.290
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
De Silva, V.2
Langford, J.C.3
-
56
-
-
67449107061
-
New proof of the Hörmander multiplier theorem on compact manifolds without boundary
-
XU, X.: New proof of the Hörmander multiplier theorem on compact manifolds without boundary. - Proc. Amer. Math. Soc. 135:5, 2007, 1585-1595.
-
(2007)
Proc. Amer. Math. Soc.
, vol.135
, Issue.5
, pp. 1585-1595
-
-
Xu, X.1
-
57
-
-
1942482021
-
Principal manifolds and nonlinear dimension reduction via local tangent space alignement
-
Dept. of Computer Science and Engineering, Pennsylvania State Univ.
-
ZHANG, Z. and H. ZHA: Principal manifolds and nonlinear dimension reduction via local tangent space alignement. - Technical Report CSE-02-019, Dept. of Computer Science and Engineering, Pennsylvania State Univ., 2002.
-
(2002)
Technical Report CSE-02-019
-
-
Zhang, Z.1
Zha, H.2
|