메뉴 건너뛰기




Volumn 82, Issue 3, 2010, Pages

Noise figure of amplified dispersive Fourier transformation

Author keywords

[No Author keywords available]

Indexed keywords

DETECTOR ARRAYS; DISPERSIVE FIBER; FOURIER TRANSFORMATIONS; OPTICAL DOMAINS; OPTICAL PULSE; OPTICAL SPECTROMETERS; PIXEL PHOTODETECTORS; REAL-TIME SPECTROSCOPY; SPECTROSCOPIC MEASUREMENTS; TEMPORAL WAVEFORMS; ULTRA-FAST;

EID: 77957147545     PISSN: 10502947     EISSN: 10941622     Source Type: Journal    
DOI: 10.1103/PhysRevA.82.033827     Document Type: Article
Times cited : (9)

References (29)
  • 1
    • 65949114635 scopus 로고    scopus 로고
    • NATUAS 0028-0836 10.1038/nature07980
    • K. Goda, K. K. Tsia, and B. Jalali, Nature (London) NATUAS 0028-0836 10.1038/nature07980 458, 1145 (2009).
    • (2009) Nature (London) , vol.458 , pp. 1145
    • Goda, K.1    Tsia, K.K.2    Jalali, B.3
  • 2
    • 70350213106 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.80.043821
    • K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.80.043821 80, 043821 (2009).
    • (2009) Phys. Rev. A , vol.80 , pp. 043821
    • Goda, K.1    Solli, D.R.2    Tsia, K.K.3    Jalali, B.4
  • 3
    • 37549030544 scopus 로고    scopus 로고
    • PLRAAN 1749-4885 10.1038/nphoton.2007.253
    • D. R. Solli, J. Chou, and B. Jalali, Nature Photon. PLRAAN 1749-4885 10.1038/nphoton.2007.253 2, 48 (2008).
    • (2008) Nature Photon. , vol.2 , pp. 48
    • Solli, D.R.1    Chou, J.2    Jalali, B.3
  • 4
    • 48249143715 scopus 로고    scopus 로고
    • APPLAB 0003-6951 10.1063/1.2963974
    • K. Goda, D. R. Solli, and B. Jalali, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.2963974 93, 031106 (2008).
    • (2008) Appl. Phys. Lett. , vol.93 , pp. 031106
    • Goda, K.1    Solli, D.R.2    Jalali, B.3
  • 5
    • 53349153742 scopus 로고    scopus 로고
    • APPLAB 0003-6951 10.1063/1.2992064
    • K. Goda, K. K. Tsia, and B. Jalali, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.2992064 93, 131109 (2008).
    • (2008) Appl. Phys. Lett. , vol.93 , pp. 131109
    • Goda, K.1    Tsia, K.K.2    Jalali, B.3
  • 6
    • 41049101148 scopus 로고    scopus 로고
    • APPLAB 0003-6951 10.1063/1.2896652
    • J. Chou, D. Solli, and B. Jalali, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.2896652 92, 111102 (2008).
    • (2008) Appl. Phys. Lett. , vol.92 , pp. 111102
    • Chou, J.1    Solli, D.2    Jalali, B.3
  • 11
  • 13
    • 34548386212 scopus 로고    scopus 로고
    • OPEXFF 1094-4087 10.1364/OE.15.011385
    • J. Hult, R. S. Watt, and C. F. Kaminski, Opt. Express OPEXFF 1094-4087 10.1364/OE.15.011385 15, 11385 (2007).
    • (2007) Opt. Express , vol.15 , pp. 11385
    • Hult, J.1    Watt, R.S.2    Kaminski, C.F.3
  • 14
    • 34247196842 scopus 로고    scopus 로고
    • OPEXFF 1094-4087 10.1364/OE.14.011575
    • S. Moon and D. Y. Kim, Opt. Express OPEXFF 1094-4087 10.1364/OE.14.011575 14, 11575 (2006).
    • (2006) Opt. Express , vol.14 , pp. 11575
    • Moon, S.1    Kim, D.Y.2
  • 15
    • 59349087293 scopus 로고    scopus 로고
    • APPLAB 0003-6951 10.1063/1.3075057
    • S. Gupta and B. Jalali, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.3075057 94, 041105 (2009).
    • (2009) Appl. Phys. Lett. , vol.94 , pp. 041105
    • Gupta, S.1    Jalali, B.2
  • 16
    • 57349160367 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.101.233902
    • D. R. Solli, C. Ropers, and B. Jalali, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.101.233902 101, 233902 (2008).
    • (2008) Phys. Rev. Lett. , vol.101 , pp. 233902
    • Solli, D.R.1    Ropers, C.2    Jalali, B.3
  • 20
    • 33748961622 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.74.033817
    • E. E. Mikhailov, K. Goda, and N. Mavalvala, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.74.033817 74, 033817 (2006).
    • (2006) Phys. Rev. A , vol.74 , pp. 033817
    • Mikhailov, E.E.1    Goda, K.2    Mavalvala, N.3
  • 21
    • 77957111407 scopus 로고    scopus 로고
    • Technically speaking, ADFT works for any pulse width, even less than 1 ps, because ADFT does not require transform-limited pulses. An ultrashort pulse with less than 1 ps pulse width can be prechirped with prisms or diffraction gratings in free space before entering the dispersive fiber such that the pulse width is broadened to be longer than 1 ps and hence the slowly varying envelope approximation can still be used to solve the nonlinear Schrödinger equation analytically.
    • Technically speaking, ADFT works for any pulse width, even less than 1 ps, because ADFT does not require transform-limited pulses. An ultrashort pulse with less than 1 ps pulse width can be prechirped with prisms or diffraction gratings in free space before entering the dispersive fiber such that the pulse width is broadened to be longer than 1 ps and hence the slowly varying envelope approximation can still be used to solve the nonlinear Schrödinger equation analytically.
  • 22
    • 77957143471 scopus 로고    scopus 로고
    • In most cases of Raman amplification, cw or quasi-cw pumping configurations are used to avoid the pulse walk-off between the Stokes and pump fields. Therefore, the assumptions made on short pulses are only relevant to the Stokes field as they are not necessary for the pump fields.
    • In most cases of Raman amplification, cw or quasi-cw pumping configurations are used to avoid the pulse walk-off between the Stokes and pump fields. Therefore, the assumptions made on short pulses are only relevant to the Stokes field as they are not necessary for the pump fields.
  • 23
    • 77957103487 scopus 로고    scopus 로고
    • This assumption does not hold when the Stokes field is significantly amplified and its intensity becomes comparable to that of the pumps. In this case, the pump intensity is no longer independent of the propagation distance and is a function of the intensity of the Stokes field. Then, we cannot solve Eq. (1) analytically and hence need to rely on numerical calculations.
    • This assumption does not hold when the Stokes field is significantly amplified and its intensity becomes comparable to that of the pumps. In this case, the pump intensity is no longer independent of the propagation distance and is a function of the intensity of the Stokes field. Then, we cannot solve Eq. (1) analytically and hence need to rely on numerical calculations.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.