-
1
-
-
0029427666
-
Enhancing thermal conductivity of fluids with nanoparticles
-
(ASME FED 231/MD)
-
S. U. S. Choi, Enhancing Thermal Conductivity of Fluids with Nanoparticles, Developments and Applications of Non-Newtonian Flows (ASME FED 231/MD), Vol. 66, pp. 99-103, 1995.
-
(1995)
Developments and Applications of Non-Newtonian Flows
, vol.66
, pp. 99-103
-
-
Choi, S.U.S.1
-
2
-
-
0037394035
-
Aggregation structure and thermal conductivity of nanofluids
-
Y. Xuan, Q. Li, and W. Hu, Aggregation Structure and Thermal Conductivity of Nanofluids, AIChEJ., Vol. 49, pp. 1038-1043, 2003.
-
(2003)
AIChE J.
, vol.49
, pp. 1038-1043
-
-
Xuan, Y.1
Li, Q.2
Hu, W.3
-
3
-
-
42149161885
-
3 nanoparticles
-
3 Nanoparticles, Intl. J. Heat Mass Transf., Vol. 51, pp. 2651-2656, 2008.
-
(2008)
Intl. J. Heat Mass Transf.
, vol.51
, pp. 2651-2656
-
-
Lee, J.H.1
Hwang, K.S.2
Jang, S.P.3
Lee, B.H.4
Kim, J.H.5
Choi, S.U.S.6
Choi, C.J.7
-
4
-
-
0042418742
-
Temperature dependence of thermal conductivity enhancement for nanofluids
-
S. Das, N. Putra, P. Thiesen, and W. Roetzel, Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids, J. Heat Transf., Vol. 125, pp. 567-574, 2003.
-
(2003)
J. Heat Transf.
, vol.125
, pp. 567-574
-
-
Das, S.1
Putra, N.2
Thiesen, P.3
Roetzel, W.4
-
5
-
-
0007644403
-
Alteration of thermal conductivity and viscosity of liquid by dispersion of ultra-fine particles
-
H. Masuda, A. Ebata, K. Teramae, and N. Hishinuma, Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersion of Ultra-Fine Particles, Netsu Bussei (Japan), Vol. 4, pp. 227-233, 1993.
-
(1993)
Netsu Bussei (Japan)
, vol.4
, pp. 227-233
-
-
Masuda, H.1
Ebata, A.2
Teramae, K.3
Hishinuma, N.4
-
8
-
-
0030711234
-
Enhanced thermal conductivity through the development of nanofluids
-
Boston
-
J. A. Eastman, S. U. S. Choi, S. Li, and L. J. Thompson, Enhanced Thermal Conductivity Through the Development of Nanofluids, Proceedings of the Symposium on Nanophase and Nanocomposite Materials II, Materials Research Society, vol. 457 pp. 3-11, Boston, 1997.
-
(1997)
Proceedings of the Symposium on Nanophase and Nanocomposite Materials II, Materials Research Society
, vol.457
, pp. 3-11
-
-
Eastman, J.A.1
Choi, S.U.S.2
Li, S.3
Thompson, L.J.4
-
9
-
-
0001435905
-
Anomalously increased effective thermal conductivities of ethylene glycol based nanofluids containing copper nanoparticles
-
J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol Based Nanofluids Containing Copper Nanoparticles, Appl. Phys. Lett., Vol. 78, pp. 718-720, 2001.
-
(2001)
Appl. Phys. Lett.
, vol.78
, pp. 718-720
-
-
Eastman, J.A.1
Choi, S.U.S.2
Li, S.3
Yu, W.4
Thompson, L.J.5
-
10
-
-
0032043092
-
Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles
-
B. C. Pak and Y I. Cho, Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles, Exp. Heat Transf, Vol. 11, pp. 151-170, 1998.
-
(1998)
Exp. Heat Transf
, vol.11
, pp. 151-170
-
-
Pak, B.C.1
Cho, Y.I.2
-
11
-
-
0033339009
-
Thermal conductivity of nanoparticles-fluid mixture
-
X. Wang, X. Xu, and S. U. S. Choi, Thermal Conductivity of Nanoparticles-Fluid Mixture, J. Thermophys. Heat Transf, Vol. 13, pp. 474-480, 1999.
-
(1999)
J. Thermophys. Heat Transf
, vol.13
, pp. 474-480
-
-
Wang, X.1
Xu, X.2
Choi, S.U.S.3
-
12
-
-
33947152489
-
2 nanoparticles (Nanofluids) flowing upward through a vertical pipe
-
2 Nanoparticles (Nanofluids) Flowing Upward Through a Vertical Pipe, Intl. J. Heat Mass Transf., vol. 50, p. 2272, 2007.
-
(2007)
Intl. J. Heat Mass Transf.
, vol.50
, pp. 2272
-
-
He, Y.1
Jin, Y.2
Chen, H.3
Ding, Y.4
Cang, D.5
Lu, H.6
-
14
-
-
67649391981
-
3
-
Paper no. 93, Al Ain, United Arab Emirates, January 3-6
-
3, Proceedings of the 2nd International Conference on Thermal Engineering Theory and Applications, Paper no. 93, Al Ain, United Arab Emirates, January 3-6, 2006.
-
(2006)
Proceedings of the 2nd International Conference on Thermal Engineering Theory and Applications
-
-
Maré, T.1
Schmitt, A.G.2
Nguyen, C.T.3
Miriel, J.4
Roy, G.5
-
15
-
-
41149171667
-
Study for the particle's scale effect on some thermo physical properties of nanofluids by a simplified molecular dynamics method
-
W.-Q. Lu and Q.-M. Fan, Study for the Particle's Scale Effect on Some Thermo Physical Properties of Nanofluids by a Simplified Molecular Dynamics Method, Eng. Analysis Boundary Elements, Vol. 32, pp. 282-289, 2008.
-
(2008)
Eng. Analysis Boundary Elements
, vol.32
, pp. 282-289
-
-
Lu, W.-Q.1
Fan, Q.-M.2
-
16
-
-
30344457064
-
Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol
-
K. Kwak and C. Kim, Viscosity and Thermal Conductivity of Copper Oxide Nanofluid Dispersed in Ethylene Glycol, Korea-Australia Rheol. J., Vol. 17, pp. 35-40, 2005.
-
(2005)
Korea-Australia Rheol. J.
, vol.17
, pp. 35-40
-
-
Kwak, K.1
Kim, C.2
-
17
-
-
36448965689
-
3-water nanofluid - Hysteresis: Is heat transfer enhancement using nanofluids reliable?
-
3-Water Nanofluid - Hysteresis: Is Heat Transfer Enhancement Using Nanofluids Reliable? Intl. J. Thermal Sci., Vol. 47, pp. 103-111, 2008.
-
(2008)
Intl. J. Thermal Sci.
, vol.47
, pp. 103-111
-
-
Nguyen, C.T.1
Desgranges, F.2
Galanis, N.3
Roy, G.4
Mare, T.5
-
18
-
-
35748946934
-
Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture
-
P. K. Namburu, D. P. Kulkarni, O. Misra, and D. K. Das, Viscosity of Copper Oxide Nanoparticles Dispersed in Ethylene Glycol and Water Mixture, Exp. Thermal Fluid Sci., Vol. 32, pp. 397-402, 2007.
-
(2007)
Exp. Thermal Fluid Sci.
, vol.32
, pp. 397-402
-
-
Namburu, P.K.1
Kulkarni, D.P.2
Misra, O.3
Das, D.K.4
-
19
-
-
34547184132
-
The calculation of thermal conductivity, viscosity and thermody-namic properties for nanofluids on the basis of statistical nanomechanics
-
J. Avsec and M. Oblak, The Calculation of Thermal Conductivity, Viscosity and Thermody-namic Properties for Nanofluids on the Basis of Statistical Nanomechanics, Intl. J. Heat Mass Transf., Vol. 50, pp. 4331-4341, 2007.
-
(2007)
Intl. J. Heat Mass Transf.
, vol.50
, pp. 4331-4341
-
-
Avsec, J.1
Oblak, M.2
-
20
-
-
39449114611
-
Investigations of thermal conductivity and viscosity of nanofluids
-
S. M. S. Murshed, K. C. Leong, and C. Yang, Investigations of Thermal Conductivity and Viscosity of Nanofluids, Intl. J. Thermal Sci., 47, pp. 560-568, 2008.
-
(2008)
Intl. J. Thermal Sci.
, vol.47
, pp. 560-568
-
-
Murshed, S.M.S.1
Leong, K.C.2
Yang, C.3
-
21
-
-
24144484758
-
Thermal conductivity enhancement of nanofluids by brownian motion
-
C. H. Chonand K. D. Kihm, Thermal Conductivity Enhancement of Nanofluids by Brownian Motion, J. Heat Transf., vol. 127, p. 810, 2005.
-
(2005)
J. Heat Transf.
, vol.127
, pp. 810
-
-
Chonand, C.H.1
Kihm, K.D.2
-
22
-
-
33646739701
-
Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (Nanofluids)
-
C. H. Li and G. P. Peterson, Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids), J. Appl. Phys., vol. 99, p. 084314, 2006.
-
(2006)
J. Appl. Phys.
, vol.99
, pp. 084314
-
-
Li, C.H.1
Peterson, G.P.2
-
23
-
-
84890133693
-
-
John Wiley & Sons, Inc., Hoboken, NJ
-
S. K. Das, S. U. S. Choi, W. Yu, and T. Pradeep, Nanofluids: Science and Technology, John Wiley & Sons, Inc., Hoboken, NJ, 2008.
-
(2008)
Nanofluids: Science and Technology
-
-
Das, S.K.1
Choi, S.U.S.2
Yu, W.3
Pradeep, T.4
-
24
-
-
70349607220
-
A benchmark study on the thermal conductivity of nanofluids
-
J. Buongiorno, D. C. Venerus, N. Prabhat, T. McKrell, J. Townsend, R. Christianson, Y. V. Tolmachev, P. Keblinski, L. Hu, J. L. Alvarado, I. C. Bang, S. W. Bishnoi, M. Bonetti, F. Botz, A. Cecere, Y. Chang, G. Chen, H. Chen, S. J. Chung, M. K. Chyu, S. K. Das, R. D. Paola, Y. Ding, F. Dubois, G. Dzido, J. Eapen, W. Escher, D. Funfschilling, Q. Galand, J. Gao, P. E. Gharagozloo, K. E. Goodson, J. G. Gutierrez, H. Hong, M. Horton, K. S. Hwang, C. S. Iorio, S. P. Jang, A. B. Jarzebski, Y. Jiang, L. Jin, S. Kabelac, A. Kamath, M. A. Kedzierski, L. G. Kieng, C. Kim, J. Kim, S. Kim, S. H. Lee, K. C. Leong, I. Manna, B. Michel, R. Ni, H. E. Patel, J. Philip, D. Poulikakos, C. Reynaud, R. Savino, P. K. Singh, P. Song, T. Sundararajan, E. Timofeeva, T. Tritcak, A. N. Turanov, S. V. Vaerenbergh, D. Wen, S. Witharana, C. Yang, W.-H. Yeh, X. Z. Zhao, and S. Q. Zhou, A Benchmark Study on the Thermal Conductivity of Nanofluids, J. Appl. Physics, vol. 106, p. 094312, 2009.
-
(2009)
J. Appl. Physics
, vol.106
, pp. 094312
-
-
Buongiorno, J.1
Venerus, D.C.2
Prabhat, N.3
McKrell, T.4
Townsend, J.5
Christianson, R.6
Tolmachev, Y.V.7
Keblinski, P.8
Hu, L.9
Alvarado, J.L.10
Bang, I.C.11
Bishnoi, S.W.12
Bonetti, M.13
Botz, F.14
Cecere, A.15
Chang, Y.16
Chen, G.17
Chen, H.18
Chung, S.J.19
Chyu, M.K.20
Das, S.K.21
Paola, R.D.22
Ding, Y.23
Dubois, F.24
Dzido, G.25
Eapen, J.26
Escher, W.27
Funfschilling, D.28
Galand, Q.29
Gao, J.30
Gharagozloo, P.E.31
Goodson, K.E.32
Gutierrez, J.G.33
Hong, H.34
Horton, M.35
Hwang, K.S.36
Iorio, C.S.37
Jang, S.P.38
Jarzebski, A.B.39
Jiang, Y.40
Jin, L.41
Kabelac, S.42
Kamath, A.43
Kedzierski, M.A.44
Kieng, L.G.45
Kim, C.46
Kim, J.47
Kim, S.48
Lee, S.H.49
Leong, K.C.50
Manna, I.51
Michel, B.52
Ni, R.53
Patel, H.E.54
Philip, J.55
Poulikakos, D.56
Reynaud, C.57
Savino, R.58
Singh, P.K.59
Song, P.60
Sundararajan, T.61
Timofeeva, E.62
Tritcak, T.63
Turanov, A.N.64
Vaerenbergh, S.V.65
Wen, D.66
Witharana, S.67
Yang, C.68
Yeh, W.-H.69
Zhao, X.Z.70
Zhou, S.Q.71
more..
-
25
-
-
0032825295
-
Measuring thermal conductivity of fluids containing oxide nanoparticles
-
S. Lee, S. U. S. Choi, S. Li, and J. A. Eastman, Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles, J. Heat Transf., Vol. 121, pp. 280-289, 1999.
-
(1999)
J. Heat Transf.
, vol.121
, pp. 280-289
-
-
Lee, S.1
Choi, S.U.S.2
Li, S.3
Eastman, J.A.4
-
27
-
-
56749151067
-
Effect of thermophysical properties models on the prediction of the convective heat transfer coefficient for low concentration nanofluid
-
W. Duangthongsuk and S. Wongwises, Effect of Thermophysical Properties Models on the Prediction of the Convective Heat Transfer Coefficient for Low Concentration Nanofluid, Intl. Comm. Heat Mass Transf., Vol. 35, pp. 1320-1326, 2008.
-
(2008)
Intl. Comm. Heat Mass Transf.
, vol.35
, pp. 1320-1326
-
-
Duangthongsuk, W.1
Wongwises, S.2
-
28
-
-
59349114465
-
Heat transfer enhancement and pressure drop characteristics of TiO2-water nanofluid in a double-tube counter flow heat exchanger
-
W. Duangthongsuk and S. Wongwises, Heat Transfer Enhancement and Pressure Drop Characteristics of TiO2-Water Nanofluid in a Double-Tube Counter Flow Heat Exchanger, Intl. J. Heat Mass Transf., Vol. 52, pp. 2059-2067, 2009.
-
(2009)
Intl. J. Heat Mass Transf.
, vol.52
, pp. 2059-2067
-
-
Duangthongsuk, W.1
Wongwises, S.2
-
30
-
-
0242582398
-
Thermal conductivity of heterogeneous two-component systems
-
R. L. Hamilton and O. K. Crosser, Thermal Conductivity of Heterogeneous Two-Component Systems, Ind. Eng. Chem. Fundament. 1, Vol. 1, pp. 187-191, 1962.
-
(1962)
Ind. Eng. Chem. Fundament. 1
, vol.1
, pp. 187-191
-
-
Hamilton, R.L.1
Crosser, O.K.2
-
31
-
-
0034069053
-
Heat transfer enhancementof nanofluids
-
Y. Xuan and Q. Li, Heat Transfer Enhancementof Nanofluids, Intl. J. Heat Fluid Flow, Vol. 21, pp. 58-64, 2000.
-
(2000)
Intl. J. Heat Fluid Flow
, vol.21
, pp. 58-64
-
-
Xuan, Y.1
Li, Q.2
-
35
-
-
0023844053
-
Describing the uncertainties in experimental results
-
R. J. Moffat, Describing the Uncertainties in Experimental Results, Exp. Thermal Fluid Sci., Vol. 1, pp. 3-17, 1988.
-
(1988)
Exp. Thermal Fluid Sci.
, vol.1
, pp. 3-17
-
-
Moffat, R.J.1
-
37
-
-
0003591850
-
-
Version 6.01, NIST Standard Reference Database 23, National Institute of Standards and Technology, Gaithersburg, MD
-
M. O. McLinden, S. A. Klein, E. W. Lemmon, and A. P. Peskin, NIST Thermodynamic and Transport Properties of Refrigerant Mixtures - REFPROP, Version 6.01, NIST Standard Reference Database 23, National Institute of Standards and Technology, Gaithersburg, MD, 1998.
-
(1998)
NIST Thermodynamic and Transport Properties of Refrigerant Mixtures - REFPROP
-
-
McLinden, M.O.1
Klein, S.A.2
Lemmon, E.W.3
Peskin, A.P.4
-
38
-
-
33947722121
-
Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles
-
X. Zhang, H. Gu, and M. Fujii, Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids Containing Spherical and Cylindrical Nanoparticles, Exp. Thermal Fluid Sci., Vol. 31, pp. 593-599, 2007.
-
(2007)
Exp. Thermal Fluid Sci.
, vol.31
, pp. 593-599
-
-
Zhang, X.1
Gu, H.2
Fujii, M.3
-
39
-
-
48349091881
-
-
Argonne National Laboratory
-
W. Yu, D. M. France, S. U. S. Choi, and J. L. Routbort, Review and Assessment of Nanofluid Technologyfor Transportation and Other Applications, Argonne National Laboratory, pp. 1-78, 2007.
-
(2007)
Review and Assessment of Nanofluid Technologyfor Transportation and Other Applications
, pp. 1-78
-
-
Yu, W.1
France, D.M.2
Choi, S.U.S.3
Routbort, J.L.4
-
40
-
-
0242582398
-
Thermal conductivity of heterogeneous two-component systems
-
R. L. Hamilton and O. K. Crosser, Thermal Conductivity of Heterogeneous Two-Component Systems, I & EC Fundamentals, Vol. 1, pp. 187-191, 1962.
-
(1962)
I & EC Fundamentals
, vol.1
, pp. 187-191
-
-
Hamilton, R.L.1
Crosser, O.K.2
-
41
-
-
37749004290
-
Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory
-
E. V. Timofeeva, A. N. Gavrilov, J. M. McCloskey, and Y. V. Tolmachev, Thermal Conductivity and Particle Agglomeration in Alumina Nanofluids: Experiment and Theory, Physical Rev., vol. 76, p. 061203, 2007.
-
(2007)
Physical Rev.
, vol.76
, pp. 061203
-
-
Timofeeva, E.V.1
Gavrilov, A.N.2
McCloskey, J.M.3
Tolmachev, Y.V.4
-
44
-
-
0012452966
-
The viscosity of concentrated suspensions and solution
-
H. C. Brinkman, The Viscosity of Concentrated Suspensions and Solution, J. Chem. Physics, Vol. 20, pp. 571-581, 1952.
-
(1952)
J. Chem. Physics
, vol.20
, pp. 571-581
-
-
Brinkman, H.C.1
|