메뉴 건너뛰기




Volumn 43, Issue 12, 2010, Pages 3998-4010

Minimum classification error learning for sequential data in the wavelet domain

Author keywords

Discriminative training; Hidden Markov models; Hidden Markov trees; Minimum classification error; Wavelet transform

Indexed keywords

CLASSIFICATION TASKS; DISCRIMINATIVE TRAINING; DYNAMIC PATTERN RECOGNITION; DYNAMIC PATTERNS; HIDDEN MARKOV TREE; LEARNING STRATEGY; LOCAL DYNAMICS; MARKOV MODEL; MINIMUM CLASSIFICATION ERROR; MULTI-RESOLUTIONS; NUMERICAL EXPERIMENTS; PHONEME RECOGNITION; RECOGNITION RATES; SEQUENTIAL DATA; STRUCTURED DATA; VARIABLE LENGTH; WAVELET DOMAIN; WAVELET FEATURES;

EID: 77957016895     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2010.07.010     Document Type: Article
Times cited : (3)

References (43)
  • 1
  • 3
    • 29244472223 scopus 로고    scopus 로고
    • Hidden Markov tree model applied to ECG delineation
    • DOI 10.1109/TIM.2005.858568
    • S. Graja, and J.-M. Boucher Hidden Markov tree model applied to ECG delineation IEEE Transactions on Instrumentation and Measurement 54 6 2005 2163 2168 10.1109/TIM.2005.858568 (Pubitemid 41824671)
    • (2005) IEEE Transactions on Instrumentation and Measurement , vol.54 , Issue.6 , pp. 2163-2168
    • Graja, S.1    Boucher, J.-M.2
  • 9
    • 27644538928 scopus 로고    scopus 로고
    • Boundary refinements for wavelet-domain multiscale texture segmentation
    • DOI 10.1016/j.imavis.2005.07.011, PII S0262885605001198
    • E. Mor, and M. Aladjem Boundary refinements for wavelet-domain multiscale texture segmentation Image and Vision Computing 23 13 2005 1150 1158 10.1016/j.imavis.2005.07.011 (Pubitemid 41562996)
    • (2005) Image and Vision Computing , vol.23 , Issue.13 , pp. 1150-1158
    • Mor, E.1    Aladjem, M.2
  • 10
    • 54949102733 scopus 로고    scopus 로고
    • Rotation-invariant texture retrieval using wavelet-based hidden Markov trees
    • 10.1016/j.sigpro.2008.04.019
    • V.R. Rallabandi, and V.S. Rallabandi Rotation-invariant texture retrieval using wavelet-based hidden Markov trees Signal Processing 88 10 2008 2593 2598 10.1016/j.sigpro.2008.04.019
    • (2008) Signal Processing , vol.88 , Issue.10 , pp. 2593-2598
    • Rallabandi, V.R.1    Rallabandi, V.S.2
  • 11
    • 33750528158 scopus 로고    scopus 로고
    • Real-time detection of steam in video images
    • 101016/jpatcog200607007
    • R. Ferrari, H. Zhang, and C. Kube Real-time detection of steam in video images Pattern Recognition 40 3 2007 1148 1159 10.1016/j.patcog.2006.07.007
    • (2007) Pattern Recognition , vol.40 , Issue.3 , pp. 1148-1159
    • Ferrari, R.1    Zhang, H.2    Kube, C.3
  • 12
    • 67349087239 scopus 로고    scopus 로고
    • Multiscale fusion of wavelet-domain hidden Markov tree through graph cut
    • doi: 10.1016/j.imavis.2008.12.005
    • Y. Zhang, Y. Zhang, Z. He, X. Tang, Multiscale fusion of wavelet-domain hidden Markov tree through graph cut, Image and Vision Computing 27 (9) (2009) 14021410. doi: 10.1016/j.imavis.2008.12.005.
    • (2009) Image and Vision Computing , vol.27 , Issue.9 , pp. 1402-1410
    • Zhang, Y.1    Zhang, Y.2    He, Z.3    Tang, X.4
  • 13
    • 36749060017 scopus 로고    scopus 로고
    • Writer identification of Chinese handwriting documents using hidden Markov tree model
    • DOI 10.1016/j.patcog.2007.08.017, PII S0031320307004037
    • Z. He, X. You, and Y.Y. Tang Writer identification of Chinese handwriting documents using hidden Markov tree model Pattern Recognition 41 4 2008 1295 1307 10.1016/j.patcog.2007.08.017 (Pubitemid 350212968)
    • (2008) Pattern Recognition , vol.41 , Issue.4 , pp. 1295-1307
    • He, Z.1    You, X.2    Tang, Y.Y.3
  • 14
    • 74449091787 scopus 로고    scopus 로고
    • Denoising and recognition using hidden Markov models with observation distributions modeled by hidden Markov trees
    • doi: 10.1016/j.patcog.2009.11.010
    • D.H. Milone, L.E.D. Persia, M.E. Torres, Denoising and recognition using hidden Markov models with observation distributions modeled by hidden Markov trees, Pattern Recognition 43 (4) (2010) 15771589. doi: 10.1016/j.patcog.2009. 11.010.
    • (2010) Pattern Recognition , vol.43 , Issue.4 , pp. 1577-1589
    • Milone, D.H.1    Persia, L.E.D.2    Torres, M.E.3
  • 15
    • 0000353178 scopus 로고
    • A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
    • L. Baum, T. Petric, G. Soules, and N. Weiss A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains Annals Mathematical Statistics 41 1970 164 171
    • (1970) Annals Mathematical Statistics , vol.41 , pp. 164-171
    • Baum, L.1    Petric, T.2    Soules, G.3    Weiss, N.4
  • 16
    • 58049157020 scopus 로고    scopus 로고
    • Signal denoising with hidden Markov models using hidden Markov trees as observation densities
    • D. Milone, L.D. Persia, D. Tomassi, Signal denoising with hidden Markov models using hidden Markov trees as observation densities, in: Proceedings of the IEEE MLSP08 Workshop, 2008, pp. 374379.
    • (2008) Proceedings of the IEEE MLSP08 Workshop , pp. 374-379
    • Milone, D.1    Persia, L.D.2    Tomassi, D.3
  • 17
    • 85032750905 scopus 로고    scopus 로고
    • Discriminative learning in sequential pattern recognition: A unifying review for optimization-based speech recognition
    • X. He, L. Deng, and W. Chou Discriminative learning in sequential pattern recognition: a unifying review for optimization-based speech recognition IEEE Signal Processing Magazine 25 2008 14 36
    • (2008) IEEE Signal Processing Magazine , vol.25 , pp. 14-36
    • He, X.1    Deng, L.2    Chou, W.3
  • 21
    • 0032203256 scopus 로고    scopus 로고
    • Pattern recognition using a family of design algorithms based upon the generalized probabilistic descent method
    • S. Katagiri, B.-H. Juang, and C. Lee Pattern recognition using a family of design algorithms based upon the generalized probabilistic descent method Proceedings of the IEEE 86 1998 2345 2373
    • (1998) Proceedings of the IEEE , vol.86 , pp. 2345-2373
    • Katagiri, S.1    Juang, B.-H.2    Lee, C.3
  • 22
    • 64149104931 scopus 로고    scopus 로고
    • Statistical analysis of minimum classification error learning for gaussian and hidden Markov model classifiers
    • M. Afify, X. Li, and H. Jiang Statistical analysis of minimum classification error learning for gaussian and hidden Markov model classifiers IEEE Transactions on Audio, Speech, and Language Processing 15 2007 2405 2417
    • (2007) IEEE Transactions on Audio, Speech, and Language Processing , vol.15 , pp. 2405-2417
    • Afify, M.1    Li, X.2    Jiang, H.3
  • 23
    • 1642269041 scopus 로고    scopus 로고
    • A derivation of minimum classification error from the theoretical classification risk using Parzen estimation
    • E. McDermott, and S. Katagiri A derivation of minimum classification error from the theoretical classification risk using Parzen estimation Computers, Speech and Language 18 2004 102 122
    • (2004) Computers, Speech and Language , vol.18 , pp. 102-122
    • McDermott, E.1    Katagiri, S.2
  • 24
    • 34249738104 scopus 로고    scopus 로고
    • A new look at discriminative training for hidden Markov models
    • X. He, and L. Deng A new look at discriminative training for hidden Markov models Pattern Recognition Letters 28 2007 1285 1294
    • (2007) Pattern Recognition Letters , vol.28 , pp. 1285-1294
    • He, X.1    Deng, L.2
  • 25
    • 0025477640 scopus 로고
    • Speech database development: TIMIT and beyond
    • V. Zue, S. Sneff, and J. Glass Speech database development: TIMIT and beyond Speech Communication 9 1990 351 356
    • (1990) Speech Communication , vol.9 , pp. 351-356
    • Zue, V.1    Sneff, S.2    Glass, J.3
  • 26
    • 0345421566 scopus 로고    scopus 로고
    • Multiresolution Markov models for signal and image processing
    • A. Willsky Multiresolution Markov models for signal and image processing Proceedings of the IEEE 90 8 2002 1396 1458
    • (2002) Proceedings of the IEEE , vol.90 , Issue.8 , pp. 1396-1458
    • Willsky, A.1
  • 27
    • 0035125012 scopus 로고    scopus 로고
    • Improved hidden Markov models in the wavelet-domain
    • G. Fan, and X.-G. Xia Improved hidden Markov models in the wavelet-domain IEEE Transactions on Signal Processing 49 1 2001 115 120
    • (2001) IEEE Transactions on Signal Processing , vol.49 , Issue.1 , pp. 115-120
    • Fan, G.1    Xia, X.-G.2
  • 28
    • 33646883645 scopus 로고    scopus 로고
    • Directional multiscale modeling of images using the contourlet transform
    • D.-Y. Po, and M. Do Directional multiscale modeling of images using the contourlet transform IEEE Transactions on Image Processing 15 2 2006 651 664
    • (2006) IEEE Transactions on Image Processing , vol.15 , Issue.2 , pp. 651-664
    • Po, D.-Y.1    Do, M.2
  • 30
    • 4344665182 scopus 로고    scopus 로고
    • Computational methods for hidden Markov tree modelsan application to wavelet trees
    • J. Durand, P. Goncalves, and Y. Gudon Computational methods for hidden Markov tree modelsan application to wavelet trees IEEE Transactions on Signal Processing 52 2004 2551 2560
    • (2004) IEEE Transactions on Signal Processing , vol.52 , pp. 2551-2560
    • Durand, J.1    Goncalves, P.2    Gudon, Y.3
  • 32
    • 0000802938 scopus 로고    scopus 로고
    • Markovian models for sequential data
    • Y. Bengio Markovian models for sequential data Neural Computing Surveys 2 1999 129 162
    • (1999) Neural Computing Surveys , vol.2 , pp. 129-162
    • Bengio, Y.1
  • 33
    • 0038517661 scopus 로고    scopus 로고
    • An em algorithm for HMMs with emission distributions represented by HMMs
    • Institut Dalle Molle d'Intelligence Artificielle Perceptive, Martigny, Switzerland
    • S. Bengio, H. Bourlard, K. Weber, An EM algorithm for HMMs with emission distributions represented by HMMs, Technical Report IDIAP-RR 11, Institut Dalle Molle d'Intelligence Artificielle Perceptive, Martigny, Switzerland, 2000.
    • (2000) Technical Report IDIAP-RR 11
    • Bengio, S.1    Bourlard, H.2    Weber, K.3
  • 34
    • 0035368531 scopus 로고    scopus 로고
    • Dual hidden Markov model for characterizing wavelet coefficients from multi-aspect scattering data
    • N. Dasgupta, P. Runkle, L. Couchman, and L. Carin Dual hidden Markov model for characterizing wavelet coefficients from multi-aspect scattering data Signal Processing 81 6 2001 1303 1316
    • (2001) Signal Processing , vol.81 , Issue.6 , pp. 1303-1316
    • Dasgupta, N.1    Runkle, P.2    Couchman, L.3    Carin, L.4
  • 36
    • 0036461035 scopus 로고    scopus 로고
    • Large scale discriminative training of hidden Markov models for speech recognition
    • P. Woodland, and D. Povey Large scale discriminative training of hidden Markov models for speech recognition Computer, Speech and Language 16 2002 25 47
    • (2002) Computer, Speech and Language , vol.16 , pp. 25-47
    • Woodland, P.1    Povey, D.2
  • 37
    • 77950917809 scopus 로고    scopus 로고
    • Discriminative training of HMMs for automatic speech recognition: A survey
    • doi: 10.1016/j.csl.2009.08.002
    • H. Jiang, Discriminative training of HMMs for automatic speech recognition: a survey, Computer, Speech and Language 24 (4) (2010) 589608. doi: 10.1016/j.csl.2009.08.002.
    • (2010) Computer, Speech and Language , vol.24 , Issue.4 , pp. 589-608
    • Jiang, H.1
  • 39
    • 21944439252 scopus 로고    scopus 로고
    • Minimum classification error rate (MCE) approach in pattern recognition
    • W. Chou Minimum classification error rate (MCE) approach in pattern recognition W. Chou, B. Juang, Pattern Recognition in Speech and Language Processing 2003 CRC Press 1 49
    • (2003) Pattern Recognition in Speech and Language Processing , pp. 1-49
    • Chou, W.1
  • 41
    • 38149115249 scopus 로고    scopus 로고
    • An em algorithm to learn sequences in the wavelet domain
    • D.H. Milone, L.E.D. Persia, An EM algorithm to learn sequences in the wavelet domain, in: Lecture Notes in Computer Science, vol. 4827, 2007, pp. 518528.
    • (2007) Lecture Notes in Computer Science , vol.4827 , pp. 518-528
    • Milone, D.H.1    Persia, L.E.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.