메뉴 건너뛰기




Volumn 5990 LNAI, Issue PART 1, 2010, Pages 113-121

HOT aSAX: A novel adaptive symbolic representation for time series discords discovery

Author keywords

Anomaly Detection; Clustering; SAX; Time Series Data Mining

Indexed keywords

ANOMALY DETECTION; CLUSTERING; DATA CLEANSING; DATA SETS; EMPIRICAL EXPERIMENTS; FAULT DIAGNOSTICS; FINANCIAL DATA ANALYSIS; K-MEANS; REAL-WORLD; REAL-WORLD APPLICATION; SAX; SYMBOLIC REPRESENTATION; TIME SERIES DATA MINING; TIME SERIES DATABASE;

EID: 77956986275     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-12145-6_12     Document Type: Conference Paper
Times cited : (21)

References (8)
  • 2
    • 0032688141 scopus 로고    scopus 로고
    • Efficient time series matching by wavelets
    • Chan, K., Fu, A.: Efficient time series matching by wavelets. In: Proceedings of ICDE, Australia, pp. 126-133 (1999)
    • (1999) Proceedings of ICDE, Australia , pp. 126-133
    • Chan, K.1    Fu, A.2
  • 5
    • 34548547034 scopus 로고    scopus 로고
    • HOT SAX: Efficiently finding the most unusual time series subsequence
    • Keogh, E., Lin, J., Fu, A.: HOT SAX: Efficiently finding the most unusual time series subsequence. In: Proceedings of ICDM, USA, pp. 226-233 (2005)
    • (2005) Proceedings of ICDM, USA , pp. 226-233
    • Keogh, E.1    Lin, J.2    Fu, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.