-
1
-
-
77951470147
-
-
San Diego, Calif, USA Academic Press Mathematics in Science and Engineering
-
Podlubny I., Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Application 1999 198 San Diego, Calif, USA Academic Press xxiv+340 Mathematics in Science and Engineering
-
(1999)
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Application
, vol.198
, pp. 340
-
-
Podlubny, I.1
-
2
-
-
0012899160
-
Numerical solution of the Bagley-Torvik equation
-
Diethelm K., Ford N. J., Numerical solution of the Bagley-Torvik equation BIT 2002 42 3 490 507
-
(2002)
BIT
, vol.42
, Issue.3
, pp. 490-507
-
-
Diethelm, K.1
Ford, N.J.2
-
4
-
-
0003864328
-
-
London, UK McGraw-Hill
-
Erdlyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher Transcendental Functions. Vol. III 1955 London, UK McGraw-Hill xvii+292
-
(1955)
Higher Transcendental Functions. Vol. III
, pp. 292
-
-
Erdlyi, A.1
Magnus, W.2
Oberhettinger, F.3
Tricomi, F.G.4
-
5
-
-
25644439033
-
Analytical solution of the Bagley Torvik equation by Adomian decomposition method
-
Ray S. S., Bera R. K., Analytical solution of the Bagley Torvik equation by Adomian decomposition method Applied Mathematics and Computation 2005 168 1 398 410
-
(2005)
Applied Mathematics and Computation
, vol.168
, Issue.1
, pp. 398-410
-
-
Ray, S.S.1
Bera, R.K.2
-
7
-
-
0001618393
-
An algorithm for the numerical solution of differential equations of fractional order
-
Diethelm K., An algorithm for the numerical solution of differential equations of fractional order Electronic Transactions on Numerical Analysis 1997 5 1 6 (Pubitemid 38870919)
-
(1997)
Electronic Transactions on Numerical Analysis
, vol.5
, pp. 1-6
-
-
Diethelm, K.1
-
8
-
-
0141920794
-
Solution of the system of ordinary differential equations by Adomian decomposition method
-
Biazar J., Babolian E., Islam R., Solution of the system of ordinary differential equations by Adomian decomposition method Applied Mathematics and Computation 2004 147 3 713 719
-
(2004)
Applied Mathematics and Computation
, vol.147
, Issue.3
, pp. 713-719
-
-
Biazar, J.1
Babolian, E.2
Islam, R.3
-
10
-
-
0004315248
-
-
New York, NY, USA Springer
-
West B. J., Bologna M., Grigolini P., Physics of Fractal Operators 2003 New York, NY, USA Springer x+354
-
(2003)
Physics of Fractal Operators
, pp. 354
-
-
West, B.J.1
Bologna, M.2
Grigolini, P.3
-
11
-
-
0842329043
-
On a system of differential equations with fractional derivatives arising in rod theory
-
Atanackovic T. M., Stankovic B., On a system of differential equations with fractional derivatives arising in rod theory Journal of Physics A 2004 37 4 1241 1250
-
(2004)
Journal of Physics A
, vol.37
, Issue.4
, pp. 1241-1250
-
-
Atanackovic, T.M.1
Stankovic, B.2
-
12
-
-
39849097024
-
Analytical solution of the linear fractional differential equation by Adomian decomposition method
-
Hu Y., Luo Y., Lu Z., Analytical solution of the linear fractional differential equation by Adomian decomposition method Journal of Computational and Applied Mathematics 2008 215 1 220 229
-
(2008)
Journal of Computational and Applied Mathematics
, vol.215
, Issue.1
, pp. 220-229
-
-
Hu, Y.1
Luo, Y.2
Lu, Z.3
-
13
-
-
0041185368
-
A review of the decomposition method in applied mathematics
-
Adomian G., A review of the decomposition method in applied mathematics Journal of Mathematical Analysis and Applications 1988 135 2 501 544
-
(1988)
Journal of Mathematical Analysis and Applications
, vol.135
, Issue.2
, pp. 501-544
-
-
Adomian, G.1
-
14
-
-
33746901595
-
-
Dordrecht, The Netherlands Kluwer Academic Publishers Fundamental Theories of Physics
-
Adomian G., Solving Frontier Problems of Physics: The Decomposition Method 1994 60 Dordrecht, The Netherlands Kluwer Academic Publishers xiv+352 Fundamental Theories of Physics
-
(1994)
Solving Frontier Problems of Physics: The Decomposition Method
, vol.60
, pp. 352
-
-
Adomian, G.1
-
15
-
-
10344238128
-
Adomian decomposition: A tool for solving a system of fractional differential equations
-
DOI 10.1016/j.jmaa.2004.07.039, PII S0022247X04006286
-
Daftardar-Gejji V., Jafari H., Adomian decomposition: a tool for solving a system of fractional differential equations Journal of Mathematical Analysis and Applications 2005 301 2 508 518 (Pubitemid 39630973)
-
(2005)
Journal of Mathematical Analysis and Applications
, vol.301
, Issue.2
, pp. 508-518
-
-
Daftardar-Gejji, V.1
Jafari, H.2
-
16
-
-
74449084990
-
The variational iteration method which should be followed
-
He J.-H., Wu G.-Ch., Austin F., The variational iteration method which should be followed Nonlinear Science Letters A 2010 1 1 1 30
-
(2010)
Nonlinear Science Letters A
, vol.1
, Issue.1
, pp. 1-30
-
-
He, J.-H.1
Wu, G.-Ch.2
Austin, F.3
-
18
-
-
77954805856
-
Exact orbits of planetary motion using the Adomian decomposition method
-
Ebaid A. E., Exact orbits of planetary motion using the Adomian decomposition method Nonlinear Science Letters A 2010 1 3 249 252
-
(2010)
Nonlinear Science Letters A
, vol.1
, Issue.3
, pp. 249-252
-
-
Ebaid, A.E.1
-
19
-
-
51749111612
-
Solution of fractional vibration equation by the variational iteration method and modified decomposition method
-
Das S., Solution of fractional vibration equation by the variational iteration method and modified decomposition method International Journal of Nonlinear Sciences and Numerical Simulation 2008 9 4 361 366
-
(2008)
International Journal of Nonlinear Sciences and Numerical Simulation
, vol.9
, Issue.4
, pp. 361-366
-
-
Das, S.1
-
20
-
-
77953205877
-
The homotopy perturbation method for multi-order time fractional differential equations
-
Golbabai A., Sayevand K., The homotopy perturbation method for multi-order time fractional differential equations Nonlinear Science Letters A 2010 1 2 147 154
-
(2010)
Nonlinear Science Letters A
, vol.1
, Issue.2
, pp. 147-154
-
-
Golbabai, A.1
Sayevand, K.2
-
21
-
-
77955393855
-
The reduced differential transform method: A new approach to factional partial differential equations
-
Keskin Y., Oturanc G., The reduced differential transform method: a new approach to factional partial differential equations Nonlinear Science Letters A 2010 1 2 207 217
-
(2010)
Nonlinear Science Letters A
, vol.1
, Issue.2
, pp. 207-217
-
-
Keskin, Y.1
Oturanc, G.2
|