메뉴 건너뛰기




Volumn 6, Issue 4, 2010, Pages 1027-1035

A two-stage learning framework of relational Markov networks

Author keywords

Approximate probabilistic inference; Maximum a posterior; Optimization; Relational Markov networks

Indexed keywords

APPROXIMATE INFERENCE; CLASSIFICATION TASKS; CONJUGATE GRADIENT; CONVERGENCE SPEED; INTEGRATING INFORMATION; JOINT PROBABILISTIC; LEARNING FRAMEWORKS; LINK ATTRIBUTES; MARKOV NETWORKS; MARKOV RANDOM FIELDS; MAXIMUM A POSTERIORS; OPTIMIZATION ALGORITHMS; PROBABILISTIC INFERENCE; RELATIONAL DATA; TRAINING PROCESS; TRAINING TIME; TWO STAGE;

EID: 77956953423     PISSN: 15539105     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (2)

References (14)
  • 8
    • 0842309161 scopus 로고    scopus 로고
    • Discovering molecular pathways from protein interaction and gene expression data
    • E. Segal, H. Wang, and D. Koller. Discovering molecular pathways from protein interaction and gene expression data. Bioinformatics, 19(suppl. 1):i264-i272, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL.1
    • Segal, E.1    Wang, H.2    Koller, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.