메뉴 건너뛰기




Volumn 70, Issue 5, 2010, Pages 760-776

Estimating trends from censored assessment data under no child left behind

Author keywords

censored data; effect size; large scale reporting; No Child Left Behind (NCLB); trend analysis

Indexed keywords


EID: 77956946425     PISSN: 00131644     EISSN: 15523888     Source Type: Journal    
DOI: 10.1177/0013164410366692     Document Type: Article
Times cited : (1)

References (23)
  • 1
    • 33845319752 scopus 로고    scopus 로고
    • Maximum likelihood estimators of population parameters from doubly left-censored samples
    • Aboueissa, A.A., & Stoline, M.R. (2006). Maximum likelihood estimators of population parameters from doubly left-censored samples. Environmetrics, 17, 811-826.
    • (2006) Environmetrics , vol.17 , pp. 811-826
    • Aboueissa, A.A.1    Stoline, M.R.2
  • 2
    • 0003071821 scopus 로고
    • A note on maximum likelihood estimation for regression models using grouped data
    • Series B (Methodological)
    • Burridge, J. (1981). A note on maximum likelihood estimation for regression models using grouped data. Journal of the Royal Statistical Society, Series B (Methodological), 43, 41-45.
    • (1981) Journal of the Royal Statistical Society , vol.43 , pp. 41-45
    • Burridge, J.1
  • 4
    • 84946643955 scopus 로고
    • Simplified estimators for the normal distribution when samples are singly censored or truncated
    • Cohen, A.C. (1959). Simplified estimators for the normal distribution when samples are singly censored or truncated. Technometrics, 1, 217-237.
    • (1959) Technometrics , vol.1 , pp. 217-237
    • Cohen, A.C.1
  • 5
    • 84946655026 scopus 로고
    • Maximum likelihood estimation in the Weibull distribution based on complete and on censored samples
    • Cohen, A.C. (1965). Maximum likelihood estimation in the Weibull distribution based on complete and on censored samples. Technometrics, 7, 579-588.
    • (1965) Technometrics , vol.7 , pp. 579-588
    • Cohen, A.C.1
  • 8
    • 0022361545 scopus 로고
    • Estimation for small normal data sets with detection limits
    • Gleit, A. (1985). Estimation for small normal data sets with detection limits. Environmental Science and Technology, 19, 1201-1206.
    • (1985) Environmental Science and Technology , vol.19 , pp. 1201-1206
    • Gleit, A.1
  • 9
    • 33947667457 scopus 로고    scopus 로고
    • Box and Cox power-transformation to confined and censored nonnormal responses in regression
    • Hamasaki, T., & Kim, S.Y. (2007). Box and Cox power-transformation to confined and censored nonnormal responses in regression. Computational Statistics & Data Analysis, 51, 3788-3799.
    • (2007) Computational Statistics & Data Analysis , vol.51 , pp. 3788-3799
    • Hamasaki, T.1    Kim, S.Y.2
  • 11
    • 67650238607 scopus 로고    scopus 로고
    • The problem with "proficiency": Limitations of statistics and policy under No Child Left Behind
    • Ho, A.D. (2008). The problem with "proficiency": Limitations of statistics and policy under No Child Left Behind. Educational Researcher, 37, 351-360.
    • (2008) Educational Researcher , vol.37 , pp. 351-360
    • Ho, A.D.1
  • 12
    • 68049132624 scopus 로고    scopus 로고
    • A nonparametric framework for comparing trends and gaps across tests
    • Ho, A.D. (2009). A nonparametric framework for comparing trends and gaps across tests. Journal of Educational and Behavioral Statistics, 34, 201-228.
    • (2009) Journal of Educational and Behavioral Statistics , vol.34 , pp. 201-228
    • Ho, A.D.1
  • 13
    • 0036024667 scopus 로고    scopus 로고
    • Two measures of change in the gaps between the CDFs of test-score distributions
    • Holland, P. (2002). Two measures of change in the gaps between the CDFs of test-score distributions. Journal of Educational and Behavioral Statistics, 27, 3-17.
    • (2002) Journal of Educational and Behavioral Statistics , vol.27 , pp. 3-17
    • Holland, P.1
  • 14
    • 84948088316 scopus 로고    scopus 로고
    • Kentucky Department of Education., Retrieved from
    • Kentucky Department of Education. (2007). 2007 CATS reports. Retrieved from http://apps.k-de.state.ky.us/securecatsreports07/index.cfm?fuseaction=main.displayregionstate.
    • (2007) 2007 CATS Reports
  • 16
    • 0000581045 scopus 로고
    • A common language effect size statistic
    • McGraw, K.O., & Wong, S.P. (1992). A common language effect size statistic. Psychological Bulletin, 111, 361-365.
    • (1992) Psychological Bulletin , vol.111 , pp. 361-365
    • McGraw, K.O.1    Wong, S.P.2
  • 18
    • 77956965623 scopus 로고    scopus 로고
    • No Child Left Behind Act of 2001, Pub. L. No. 107-110, § 115 Stat. 1425, Available from, LexisNexis Congressional
    • No Child Left Behind Act of 2001, Pub. L. No. 107-110, § 115 Stat. 1425 (2002). Text from United States Public Laws. Available from LexisNexis Congressional.
    • (2002) Text from United States Public Laws
  • 19
    • 5344244656 scopus 로고    scopus 로고
    • R Development Core Team, Vienna, Austria: R Foundation for Statistical Computing
    • R Development Core Team. (2008). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
    • (2008) R: A Language and Environment for Statistical Computing
  • 20
    • 85012278496 scopus 로고
    • On interpreting test scores as social indicators: Statistical considerations
    • Spencer, B.D. (1983). On interpreting test scores as social indicators: Statistical considerations. Journal of Educational Measurement, 20, 317-333.
    • (1983) Journal of Educational Measurement , vol.20 , pp. 317-333
    • Spencer, B.D.1
  • 21
    • 77956967863 scopus 로고    scopus 로고
    • State of the states
    • Swanson, C.B. (2008). State of the states. Education Week, 27(18), 36-57.
    • (2008) Education Week , vol.27 , Issue.18 , pp. 36-57
    • Swanson, C.B.1
  • 22
    • 0014254846 scopus 로고
    • Probability plotting methods for the analysis of data
    • Wilk, M.B., & Gnanadesikan, R. (1968). Probability plotting methods for the analysis of data. Biometrika, 55, 1-17.
    • (1968) Biometrika , vol.55 , pp. 1-17
    • Wilk, M.B.1    Gnanadesikan, R.2
  • 23
    • 0000984101 scopus 로고
    • Algorithm AS 138: Maximum likelihood estimation from confined and censored normal data
    • Wolynetz, M.S. (1979). Algorithm AS 138: Maximum likelihood estimation from confined and censored normal data. Applied Statistics, 28, 185-195.
    • (1979) Applied Statistics , vol.28 , pp. 185-195
    • Wolynetz, M.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.