메뉴 건너뛰기




Volumn 29, Issue 22, 2010, Pages 2282-2296

Semiparametric regression models for repeated measures of mortal cohorts with non-monotone missing outcomes and time-dependent covariates

Author keywords

Gerontology; Longitudinal data; Missing data; Missing not at random; Sensitivity analysis

Indexed keywords

AGE DISTRIBUTION; ARTICLE; BODY COMPOSITION; COHORT ANALYSIS; FEMALE; GERIATRIC PATIENT; HIP FRACTURE; HUMAN; INFLAMMATION; MORTALITY; OUTCOME ASSESSMENT; PARAMETRIC TEST; PROBABILITY; REGRESSION ANALYSIS; TIME SERIES ANALYSIS; WALKING DIFFICULTY;

EID: 77956921803     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.3985     Document Type: Article
Times cited : (12)

References (27)
  • 1
    • 22144491220 scopus 로고    scopus 로고
    • Directly parameterized regression conditioning on being alive: Analysis of longitudinal data truncated by deaths
    • DOI: 10.1093/biostatistics/kxi006
    • Kurland BF, Heagerty PJ. Directly parameterized regression conditioning on being alive: analysis of longitudinal data truncated by deaths. Biostatistics 2005; 6:241-258. DOI: 10.1093/biostatistics/kxi006.
    • (2005) Biostatistics , vol.6 , pp. 241-258
    • Kurland, B.F.1    Heagerty, P.J.2
  • 2
    • 3242768440 scopus 로고    scopus 로고
    • Analysis of longitudinal studies with death and drop-out: A case study
    • DOI: 10.1002/sim.1821
    • Dufouil C, Brayne C, Clayton D. Analysis of longitudinal studies with death and drop-out: a case study. Statistics in Medicine 2004; 23:2215-2226. DOI: 10.1002/sim.1821.
    • (2004) Statistics in Medicine , vol.23 , pp. 2215-2226
    • Dufouil, C.1    Brayne, C.2    Clayton, D.3
  • 3
    • 40849094464 scopus 로고    scopus 로고
    • Weighted estimating equations for longitudinal studies with death and non-monotone missing time-dependent covariates and outcomes
    • DOI: 10.1002/sim.2964
    • Shardell M, Miller RR. Weighted estimating equations for longitudinal studies with death and non-monotone missing time-dependent covariates and outcomes. Statistics in Medicine 2008; 27:1008-1025. DOI: 10.1002/sim.2964.
    • (2008) Statistics in Medicine , vol.27 , pp. 1008-1025
    • Shardell, M.1    Miller, R.R.2
  • 4
    • 0032969451 scopus 로고    scopus 로고
    • Monte Carlo EM for missing covariates in parametric regression models
    • Ibrahim JG, Chen MH, Lipsitz SR. Monte Carlo EM for missing covariates in parametric regression models. Biometrics 1999; 55:591-596.
    • (1999) Biometrics , vol.55 , pp. 591-596
    • Ibrahim, J.G.1    Chen, M.H.2    Lipsitz, S.R.3
  • 6
    • 84950421496 scopus 로고
    • Analysis of semiparametric regression models for repeated outcomes in the presence of missing data
    • Robins JM, Rotnitzky A, Zhao LP. Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association 1995; 90:106-121.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 106-121
    • Robins, J.M.1    Rotnitzky, A.2    Zhao, L.P.3
  • 7
    • 0037199838 scopus 로고    scopus 로고
    • A weighted estimating equation for linear regression with missing covariate data
    • DOI: 10.1002/sim.1195
    • Parzen M, Lipsitz SR, Ibrahim JG, Lipshultz S. A weighted estimating equation for linear regression with missing covariate data. Statistics in Medicine 2002; 21:2421-2436. DOI: 10.1002/sim.1195.
    • (2002) Statistics in Medicine , vol.21 , pp. 2421-2436
    • Parzen, M.1    Lipsitz, S.R.2    Ibrahim, J.G.3    Lipshultz, S.4
  • 8
    • 0031452790 scopus 로고    scopus 로고
    • Generalized estimating equation model for binary outcomes with missing covariates
    • DOI 10.2307/2533511
    • Xie F, Paik MC. Generalized estimating equation model for binary outcomes with missing covariates. Biometrics 1997; 53:1458-1466. (Pubitemid 28013586)
    • (1997) Biometrics , vol.53 , Issue.4 , pp. 1458-1466
    • Xie, F.1    Paik, M.C.2
  • 9
    • 77649173768 scopus 로고
    • Longitudinal data analysis using generalized linear models
    • Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986; 73:13-22.
    • (1986) Biometrika , vol.73 , pp. 13-22
    • Liang, K.Y.1    Zeger, S.L.2
  • 10
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin DB. Inference and missing data. Biometrika 1976; 63:581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 13
    • 10344225877 scopus 로고    scopus 로고
    • Sensitivity analysis of longitudinal binary data with non-monotone missing values
    • DOI 10.1093/biostatistics/kxh006
    • Minini P, Chavance M. Sensitivity analysis of longitudinal binary data with non-monotone missing values. Biostatistics 2004; 5:531-544. DOI: 10.1093/biostatistics/kxh006. (Pubitemid 41180203)
    • (2004) Biostatistics , vol.5 , Issue.4 , pp. 531-544
    • Minini, P.1    Chavance, M.2
  • 14
    • 0035102566 scopus 로고    scopus 로고
    • Methods for conducting sensitivity analysis of trials with potentially nonignorable competing causes of censoring
    • Rotnitzky A, Scharfstein DO, Su TL, Robins JM. Methods for conducting sensitivity analysis of trials with potentially nonignorable competing causes of censoring. Biometrics 2001; 57:103-113.
    • (2001) Biometrics , vol.57 , pp. 103-113
    • Rotnitzky, A.1    Scharfstein, D.O.2    Su, T.L.3    Robins, J.M.4
  • 15
    • 34147095388 scopus 로고    scopus 로고
    • A marginalized pattern-mixture model for longitudinal binary data when nonresponse depends on unobserved responses
    • DOI: 10.1093/biostatistics/kxl010
    • Wilkins KJ, Fitzmaurice GM. A marginalized pattern-mixture model for longitudinal binary data when nonresponse depends on unobserved responses. Biostatistics 2007; 8:297-305. DOI: 10.1093/biostatistics/kxl010.
    • (2007) Biostatistics , vol.8 , pp. 297-305
    • Wilkins, K.J.1    Fitzmaurice, G.M.2
  • 18
    • 84963132941 scopus 로고
    • A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data
    • Pepe MS, Anderson GA. A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data. Communications in Statistics - Simulation 1994; 23:939-951.
    • (1994) Communications in Statistics - Simulation , vol.23 , pp. 939-951
    • Pepe, M.S.1    Anderson, G.A.2
  • 24
    • 1542637615 scopus 로고    scopus 로고
    • Estimation of the causal effect of a time-varying exposure on the marginal mean of a repeated binary outcome
    • Robins JM, Greenland S, Hu FC. Estimation of the causal effect of a time-varying exposure on the marginal mean of a repeated binary outcome. Journal of the American Statistical Association 1999; 94:687-712.
    • (1999) Journal of the American Statistical Association , vol.94 , pp. 687-712
    • Robins, J.M.1    Greenland, S.2    Hu, F.C.3
  • 25
    • 66949171797 scopus 로고    scopus 로고
    • On estimation of the survivor average causal effect in observational studies when important confounders are missing due to death
    • DOI: 10.1111/j.1541-0420.2008.01111.x
    • Egleston BL, Scharfstein DO, MacKenzie E. On estimation of the survivor average causal effect in observational studies when important confounders are missing due to death. Biometrics 2009; 65:497-504. DOI: 10.1111/j.1541-0420. 2008.01111.x.
    • (2009) Biometrics , vol.65 , pp. 497-504
    • Egleston, B.L.1    Scharfstein, D.O.2    MacKenzie, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.