메뉴 건너뛰기




Volumn 66, Issue 3, 2010, Pages 753-762

Markov and semi-Markov switching linear mixed models used to identify forest tree growth components

Author keywords

Individual random effect; Markov switching model; MCEM algorithm; Plant structure analysis; Semi Markov switching model

Indexed keywords

FORESTRY; IMAGE SEGMENTATION; MARKOV PROCESSES; MAXIMUM PRINCIPLE;

EID: 77956852086     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/j.1541-0420.2009.01338.x     Document Type: Article
Times cited : (12)

References (23)
  • 1
    • 33947231297 scopus 로고    scopus 로고
    • Mixed hidden Markov models: An extension of the hidden Markov model to the longitudinal data setting
    • Altman, R. M. (2007). Mixed hidden Markov models: An extension of the hidden Markov model to the longitudinal data setting. Journal of the American Statistical Association 102, 201 210.
    • (2007) Journal of the American Statistical Association , vol.102 , pp. 201-210
    • Altman, R.M.1
  • 4
    • 26844458204 scopus 로고    scopus 로고
    • Mixture of linear mixed models for clustering gene expression profiles from repeated microarray experiments
    • Celeux, G., Martin, O., and Lavergne, C. (2005). Mixture of linear mixed models for clustering gene expression profiles from repeated microarray experiments. Statistical Modelling 5, 243 267.
    • (2005) Statistical Modelling , vol.5 , pp. 243-267
    • Celeux, G.1    Martin, O.2    Lavergne, C.3
  • 5
    • 70349584857 scopus 로고    scopus 로고
    • Identifying ontogenetic, environmental and individual components of forest tree growth
    • Chaubert-Pereira, F., Caraglio, Y., Lavergne, C., and Guédon, Y. (2009). Identifying ontogenetic, environmental and individual components of forest tree growth. Annals of Botany 104, 883 896.
    • (2009) Annals of Botany , vol.104 , pp. 883-896
    • Chaubert-Pereira, F.1    Caraglio, Y.2    Lavergne, C.3    Guédon, Y.4
  • 6
    • 0003107701 scopus 로고    scopus 로고
    • Calculating posterior distributions and modal estimates in Markov mixture models
    • Chib, S. (1996). Calculating posterior distributions and modal estimates in Markov mixture models. Journal of Econometrics 75, 79 97.
    • (1996) Journal of Econometrics , vol.75 , pp. 79-97
    • Chib, S.1
  • 7
    • 19344366830 scopus 로고    scopus 로고
    • Analysis of the plant architecture via tree-structured statistical models: The hidden Markov tree models
    • Durand, J.-B., Guédon, Y., Caraglio, Y., and Costes, E. (2005). Analysis of the plant architecture via tree-structured statistical models: The hidden Markov tree models. New Phytologist 166, 813 825.
    • (2005) New Phytologist , vol.166 , pp. 813-825
    • Durand, J.-B.1    Guédon, Y.2    Caraglio, Y.3    Costes, E.4
  • 9
    • 41549102613 scopus 로고    scopus 로고
    • Computational methods for complex stochastic systems: A review of some alternatives to MCMC
    • Fearnhead, P. (2008). Computational methods for complex stochastic systems: A review of some alternatives to MCMC. Statistics and Computing 18, 151 171.
    • (2008) Statistics and Computing , vol.18 , pp. 151-171
    • Fearnhead, P.1
  • 10
    • 0009911006 scopus 로고
    • Heterogeneous variances in Gaussian linear mixed models
    • Foulley, J. L. and Quaas, R. L. (1995). Heterogeneous variances in Gaussian linear mixed models. Genetics Selection Evolution 27, 211 228.
    • (1995) Genetics Selection Evolution , vol.27 , pp. 211-228
    • Foulley, J.L.1    Quaas, R.L.2
  • 12
    • 0141907306 scopus 로고    scopus 로고
    • Estimating hidden semi-Markov chains from discrete sequences
    • Guédon, Y. (2003). Estimating hidden semi-Markov chains from discrete sequences. Journal of Computational and Graphical Statistics 12, 604 639.
    • (2003) Journal of Computational and Graphical Statistics , vol.12 , pp. 604-639
    • Guédon, Y.1
  • 13
    • 33751236183 scopus 로고    scopus 로고
    • Exploring the state sequence space for hidden Markov and semi-Markov chains
    • Guédon, Y. (2007). Exploring the state sequence space for hidden Markov and semi-Markov chains. Computational Statistics and Data Analysis 51, 2379 2409.
    • (2007) Computational Statistics and Data Analysis , vol.51 , pp. 2379-2409
    • Guédon, Y.1
  • 15
    • 0040506295 scopus 로고
    • Some Bayesian and non-Bayesian procedures for the analysis of comparative experiments and for small area estimation: Computational aspects, frequentist properties, and relationships
    • Hulting, F. L. and Harville, D. A. (1991). Some Bayesian and non-Bayesian procedures for the analysis of comparative experiments and for small area estimation: Computational aspects, frequentist properties, and relationships. Journal of the American Statistical Association 86, 557 568.
    • (1991) Journal of the American Statistical Association , vol.86 , pp. 557-568
    • Hulting, F.L.1    Harville, D.A.2
  • 16
    • 33745170376 scopus 로고    scopus 로고
    • Segmental hidden Markov models with random effects for waveform modeling
    • Kim, S. and Smyth, P. (2006). Segmental hidden Markov models with random effects for waveform modeling. Journal of Machine Learning Research 7, 945 969.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 945-969
    • Kim, S.1    Smyth, P.2
  • 17
    • 21344497135 scopus 로고
    • Maximum likelihood variance components estimation for binary data
    • McCulloch, C. E. (1994). Maximum likelihood variance components estimation for binary data. Journal of the American Statistical Association 89, 330 335.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 330-335
    • McCulloch, C.E.1
  • 18
    • 0031479575 scopus 로고    scopus 로고
    • Maximum likelihood algorithms for generalized linear mixed models
    • McCulloch, C. E. (1997). Maximum likelihood algorithms for generalized linear mixed models. Journal of the American Statistical Association 92, 162 170.
    • (1997) Journal of the American Statistical Association , vol.92 , pp. 162-170
    • McCulloch, C.E.1
  • 19
    • 84948109721 scopus 로고    scopus 로고
    • 2nd edition, Wiley Series in Probability and Statistics. Hoboken, New Jersey. John Wiley & Sons
    • McLachlan, G. J. and Krishnan, T. (2008). The EM Algorithm and Extensions, 2nd edition. Wiley Series in Probability and Statistics. Hoboken, New Jersey : John Wiley & Sons.
    • (2008) The em Algorithm and Extensions
    • McLachlan, G.J.1    Krishnan, T.2
  • 21
    • 43949146266 scopus 로고    scopus 로고
    • Qualitative longitudinal analysis of symptoms in patients with primary and metastatic brain tumours
    • Rijmen, F., Ip, E. H., Rapp, S., and Shaw, E. G. (2008). Qualitative longitudinal analysis of symptoms in patients with primary and metastatic brain tumours. Journal of the Royal Statistical Society, Series A 171, 739 753.
    • (2008) Journal of the Royal Statistical Society, Series A , vol.171 , pp. 739-753
    • Rijmen, F.1    Ip, E.H.2    Rapp, S.3    Shaw, E.G.4
  • 23
    • 84950432017 scopus 로고
    • A Monte Carlo implementation of the em algorithm and the poor man's data augmentation algorithm
    • Wei, G. C. G. and Tanner, M. A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithm. Journal of the American Statistical Association 85, 699 704.
    • (1990) Journal of the American Statistical Association , vol.85 , pp. 699-704
    • Wei, G.C.G.1    Tanner, M.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.