메뉴 건너뛰기




Volumn 19, Issue 2, 2010, Pages 474-492

Projection-based partitioning for large, high-dimensional datasets

Author keywords

Average shifted histogram; Excess mass; Local minimum; Principal component analysis; Sampling

Indexed keywords


EID: 77956707404     PISSN: 10618600     EISSN: None     Source Type: Journal    
DOI: 10.1198/jcgs.2010.08038     Document Type: Article
Times cited : (4)

References (43)
  • 6
    • 36948999941 scopus 로고    scopus 로고
    • University of California at Irvine, School of Information and Computer Science, Irvine, CA [486]
    • Asuncion, A., and Newman, D. J. (2007), "UCI Machine Learning Repository," University of California at Irvine, School of Information and Computer Science, Irvine, CA, available at http://www.ics.uci.edu/~mlearn/ MLRepository.html. [486]
    • (2007) UCI Machine Learning Repository,"
    • Asuncion, A.1    Newman, D.J.2
  • 8
    • 84892062680 scopus 로고    scopus 로고
    • A survey of clustering data mining techniques
    • eds. J. Kogan, C. Nicholas, and M. Teboulle, Berlin: Springer [475]
    • Berkhin, P. (2006), "A Survey of Clustering Data Mining Techniques," in Grouping Multidimensional Data: Recent Advances in Clustering, eds. J. Kogan, C. Nicholas, and M. Teboulle, Berlin: Springer, pp. 25-71. [475]
    • (2006) Grouping Multidimensional Data: Recent Advances in Clustering , pp. 25-71
    • Berkhin, P.1
  • 9
    • 22644451496 scopus 로고    scopus 로고
    • Principal direction divisive partitioning
    • [475,478]
    • Boley, D. (1998), "Principal Direction Divisive Partitioning," Data Mining and Knowledge Discovery, 2 (4), 325-344. [475,478]
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.4 , pp. 325-344
    • Boley, D.1
  • 12
    • 0020998698 scopus 로고
    • On using principal components before separating a mixture of two multivariate normal distributions
    • [483]
    • Chang, W. C. (1983), "On Using Principal Components Before Separating a Mixture of Two Multivariate Normal Distributions," Journal of the Royal Statistical Society, Ser. C, 32 (3), 267-275. [483]
    • (1983) Journal of the Royal Statistical Society, Ser. C , vol.32 , Issue.3 , pp. 267-275
    • Chang, W.C.1
  • 13
    • 84976803260 scopus 로고
    • FastMap: A fast algorithm for indexing, data mining and visualization of traditional and multimedia datasets
    • New York: ACM [475]
    • Faloutsos, C, and Lin, K. (1995), "FastMap: A Fast Algorithm for Indexing, Data Mining and Visualization of Traditional and Multimedia Datasets," in Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data, New York: ACM, pp. 163-174. [475]
    • (1995) Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data , pp. 163-174
    • Faloutsos, C.1    Lin, K.2
  • 14
    • 1942517297 scopus 로고    scopus 로고
    • Random projection for high dimensional data clustering: A cluster ensemble approach
    • Menlo Park, CA: AIII Press [476]
    • Fern, X. Z., and Brodley, C. E. (2003), "Random Projection for High Dimensional Data Clustering: A Cluster Ensemble Approach," in Proceedings of the 20th International Conference on Machine Learning, Menlo Park, CA: AIII Press, pp. 186-193. [476]
    • (2003) Proceedings of the 20th International Conference on Machine Learning , pp. 186-193
    • Fern, X.Z.1    Brodley, C.E.2
  • 15
    • 22844453564 scopus 로고    scopus 로고
    • MCLUST: Software for model-based cluster analysis
    • [485]
    • Fraley, C, and Raftery, A. E. (1999), "MCLUST: Software for Model-Based Cluster Analysis," Journal of Classification, 16 (2), 297-306. [485]
    • (1999) Journal of Classification , vol.16 , Issue.2 , pp. 297-306
    • Fraley, C.1    Raftery, A.E.2
  • 18
    • 0001482122 scopus 로고
    • Consistency of single linkage for high-density clusters
    • [476]
    • Hartigan, J. A. (1981), "Consistency of Single Linkage for High-Density Clusters," Journal of the American Statistical Association, 76 (374), 388-394. [476]
    • (1981) Journal of the American Statistical Association , vol.76 , Issue.374 , pp. 388-394
    • Hartigan, J.A.1
  • 19
    • 0001341972 scopus 로고
    • Estimation of a convex density contour in two dimensions
    • [481]
    • - (1987), "Estimation of a Convex Density Contour in Two Dimensions," Journal of the American Statis tical Association, 82 (397), 267-270. [481]
    • (1987) Journal of the American Statis Tical Association , vol.82 , Issue.397 , pp. 267-270
  • 21
    • 11244342326 scopus 로고    scopus 로고
    • Asymmetric linear dimension reduction for classification
    • [488]
    • Hennig, C. (2004), "Asymmetric Linear Dimension Reduction for Classification," Journal of Computational and Graphical Statistics, 13 (4), 930-945. [488]
    • (2004) Journal of Computational and Graphical Statistics , vol.13 , Issue.4 , pp. 930-945
    • Hennig, C.1
  • 22
    • 0000835955 scopus 로고    scopus 로고
    • Optimal grid-clustering: Towards breaking the curse of dimensionality in high-dimensional clustering
    • San Francisco, CA: Kaufmann [475,476,478,481,489]
    • Hinneburg, A., and Keim, D. A. (1999), "Optimal Grid-Clustering: Towards Breaking the Curse of Dimensionality in High-Dimensional Clustering," in Proceedings of the 25th International Conference on Very Large Data Bases, San Francisco, CA: Kaufmann, pp. 506-517. [475,476,478,481, 489]
    • (1999) Proceedings of the 25th International Conference on Very Large Data Bases , pp. 506-517
    • Hinneburg, A.1    Keim, D.A.2
  • 23
    • 0000263797 scopus 로고
    • Projection pursuit
    • [476,483,484]
    • Huber, P. J. (1985), "Projection Pursuit," The Annals of Statistics, 13 (2), 435-475. [476,483,484]
    • (1985) The Annals of Statistics , vol.13 , Issue.2 , pp. 435-475
    • Huber, P.J.1
  • 24
    • 0000008146 scopus 로고
    • Comparing partitions
    • [475,478]
    • Hubert, L., and Arabie, P. (1985), "Comparing Partitions," Journal of Classification, 2 (1), 193-218. [475,478]
    • (1985) Journal of Classification , vol.2 , Issue.1 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 25
    • 77956675368 scopus 로고    scopus 로고
    • Projection-based clustering for high-dimensional data sets
    • Heidelberg: Physica, Verlag [482]
    • Ilies, I., and Wilhelm, A. (2008), "Projection-Based Clustering for High-Dimensional Data Sets," in COMPSTAT 2008: Proceedings in Computational Statistics, Heidelberg: Physica Verlag. [482]
    • (2008) COMPSTAT 2008: Proceedings in Computational Statistics
    • Ilies, I.1    Wilhelm, A.2
  • 28
    • 0002039637 scopus 로고
    • Cancer diagnosis via linear programming
    • [486]
    • Mangasarian, O. L., and Wolberg, W. H. (1990), "Cancer Diagnosis via Linear Programming," SIAM News, 23 (5), 1-18. [486]
    • (1990) SIAM News , vol.23 , Issue.5 , pp. 1-18
    • Mangasarian, O.L.1    Wolberg, W.H.2
  • 31
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: A review
    • [475]
    • Parsons, L., Haque, E., and Liu, H. (2004), "Subspace Clustering for High Dimensional Data: A Review," ACM SIGKDD Explorations Newsletter, 6 (1), 90-105. [475]
    • (2004) ACM SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 90-105
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 33
    • 33744584654 scopus 로고
    • Induction of decision trees
    • [477]
    • Quinlan, L. R. (1986), "Induction of Decision Trees," Machine Learning, 1 (1), 81-106. [477]
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, L.R.1
  • 36
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • [489]
    • Schölkopf, B., Smola, A., and Müller, K.-R. (1998), "Nonlinear Component Analysis as a Kernel Eigenvalue Problem," Neural Computation, 10(5), 1299-1319. [489]
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3
  • 38
    • 77956689057 scopus 로고
    • Research memorandum, Turing Institute, Glasgow, U.K [486]
    • Siebert, J. P. (1987), "Rule-Based Vehicle Recognition," Research memorandum, Turing Institute, Glasgow, U.K. [486]
    • (1987) Rule-Based Vehicle Recognition
    • Siebert, J.P.1
  • 39
    • 0024704073 scopus 로고
    • Classification of radar returns from the ionosphere using neural networks
    • [486]
    • Sigillito, V G., Wing, S. P., Hutton, L. V, and Baker, K. B. (1989), "Classification of Radar Returns From the Ionosphere Using Neural Networks," Johns Hopkins APL Technical Digest, 10 (3), 262-266. [486]
    • (1989) Johns Hopkins APL Technical Digest , vol.10 , Issue.3 , pp. 262-266
    • Sigillito, V.G.1    Wing, S.P.2    Hutton, L.V.3    Baker, K.B.4
  • 40
    • 0037560966 scopus 로고    scopus 로고
    • Estimating the cluster tree of a density by analyzing the minimal spanning tree of a sample
    • [481]
    • Stuetzle, W (2003), "Estimating the Cluster Tree of a Density by Analyzing the Minimal Spanning Tree of a Sample," Journal of Classification, 20 (1), 25-47. [481]
    • (2003) Journal of Classification , vol.20 , Issue.1 , pp. 25-47
    • Stuetzle, W.1
  • 41
    • 77956662186 scopus 로고    scopus 로고
    • A generalized single linkage method for estimating the cluster tree of a density
    • [481,489]
    • Stuetzle, W, and Nugent, R. (2010), "A Generalized Single Linkage Method for Estimating the Cluster Tree of a Density," Journal of Computational and Graphical Statistics, 19, 397-418. [481,489]
    • (2010) Journal of Computational and Graphical Statistics , vol.19 , pp. 397-418
    • Stuetzle, W.1    Nugent, R.2
  • 42
    • 34547352462 scopus 로고    scopus 로고
    • Deterministic annealing and a £-means type smoothing optimization algorithm for data clustering
    • [475]
    • Teboulle, M., and Kogan, J. (2005), "Deterministic Annealing and a £-Means Type Smoothing Optimization Algorithm for Data Clustering," in Proceedings of the Workshop on Clustering High Dimensional Data and Its Applications, pp. 13-22, available at http://www.siam.org/meetings/sdm05/ downloads.htm. [475]
    • (2005) Proceedings of the Workshop on Clustering High Dimensional Data and Its Applications , pp. 13-22
    • Teboulle, M.1    Kogan, J.2
  • 43
    • 21944442892 scopus 로고    scopus 로고
    • BIRCH: A new data clustering algorithm and its applications
    • [475]
    • Zhang, T, Ramakrishnan, R., and Livny, M. (1997), "BIRCH: A New Data Clustering Algorithm and Its Applications," Data Mining and Knowledge Discovery, 1 (2), 141-182. [475]
    • (1997) Data Mining and Knowledge Discovery , vol.1 , Issue.2 , pp. 141-182
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.