-
1
-
-
48949106183
-
-
10.1002/adma.200702353;
-
J. A. Fagan, M. L. Becker, J. Chun, and E. K. Hobbie, Adv. Mater. 20, 1609 (2008) 10.1002/adma.200702353
-
(2008)
Adv. Mater.
, vol.20
, pp. 1609
-
-
Fagan, J.A.1
Becker, M.L.2
Chun, J.3
Hobbie, E.K.4
-
2
-
-
47949116903
-
-
10.1038/nature07110
-
Q. Cao, H.-s. Kim, N. Pimparkar, J. P. Kulkarni, C. Wang, M. Shim, K. Roy, M. A. Alam, and J. A. Rogers, Nature (London) 454, 495 (2008). 10.1038/nature07110
-
(2008)
Nature (London)
, vol.454
, pp. 495
-
-
Cao, Q.1
Kim, H.-S.2
Pimparkar, N.3
Kulkarni, J.P.4
Wang, C.5
Shim, M.6
Roy, K.7
Alam, M.A.8
Rogers, J.A.9
-
3
-
-
48249089676
-
-
10.1103/PhysRevLett.101.027002
-
N. Murata, J. Haruyama, J. Reppert, A. M. Rao, T. Koretsune, S. Saito, M. Matsudaira, and Y. Yagi, Phys. Rev. Lett. 101, 027002 (2008). 10.1103/PhysRevLett.101.027002
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 027002
-
-
Murata, N.1
Haruyama, J.2
Reppert, J.3
Rao, A.M.4
Koretsune, T.5
Saito, S.6
Matsudaira, M.7
Yagi, Y.8
-
4
-
-
77956698115
-
-
See supplementary material at, for a summary of sample fabrication methods and identification for Meissner effect
-
See supplementary material at http://link.aps.org/supplemental/10.1103/ PhysRevB.82.045402 for a summary of sample fabrication methods and identification for Meissner effect.
-
-
-
-
5
-
-
84881620693
-
-
10.1038/nphys0010
-
T. E. Weller, M. Ellerby, S. S. Saxena, R. P. Smith, and N. T. Skipper, Nat. Phys. 1, 39 (2005). 10.1038/nphys0010
-
(2005)
Nat. Phys.
, vol.1
, pp. 39
-
-
Weller, T.E.1
Ellerby, M.2
Saxena, S.S.3
Smith, R.P.4
Skipper, N.T.5
-
6
-
-
27144514370
-
Superconductivity of bulk CaC6
-
DOI 10.1103/PhysRevLett.95.087003, 087003
-
N. Emery, C. Hérold, M. d'Astuto, V. Garcia, C. Bellin, J. F. Marêché, P. Lagrange, and G. Loupias, Phys. Rev. Lett. 95, 087003 (2005). 10.1103/PhysRevLett.95.087003 (Pubitemid 41505937)
-
(2005)
Physical Review Letters
, vol.95
, Issue.8
, pp. 1-4
-
-
Emery, N.1
Herold, C.2
D'Astuto, M.3
Garcia, V.4
Bellin, Ch.5
Mareche, J.F.6
Lagrange, P.7
Loupias, G.8
-
7
-
-
1842734293
-
Superconductivity in diamond
-
DOI 10.1038/nature02449
-
E. A. Ekimov, V. A. Sidorov, E. D. Bauer, N. N. Mel'nik, N. J. Curro, J. D. Thompson, and S. M. Stishov, Nature (London) 428, 542 (2004). 10.1038/nature02449 (Pubitemid 38480534)
-
(2004)
Nature
, vol.428
, Issue.6982
, pp. 542-545
-
-
Ekimov, E.A.1
Sidorov, V.A.2
Bauer, E.D.3
Mel'nik, N.N.4
Curro, N.J.5
Thompson, J.D.6
Stishov, S.M.7
-
8
-
-
0035848218
-
Superconductivity in ropes of single-walled carbon nanotubes
-
DOI 10.1103/PhysRevLett.86.2416
-
M. Kociak, A. Yu. Kasumov, S. Guéron, B. Reulet, I. I. Khodos, Yu. B. Gorbatov, V. T. Volkov, L. Vaccarini, and H. Bouchiat, Phys. Rev. Lett. 86, 2416 (2001). 10.1103/PhysRevLett.86.2416 (Pubitemid 32278012)
-
(2001)
Physical Review Letters
, vol.86
, Issue.11
, pp. 2416-2419
-
-
Kociak, M.1
Kasumov, A.Yu.2
Gueron, S.3
Reulet, B.4
Khodos, I.I.5
Gorbatov, Yu.B.6
Volkov, V.T.7
Vaccarini, L.8
Bouchiat, H.9
-
9
-
-
15444367701
-
Electron-phonon interaction in ultrasmall-radius carbon nanotubes
-
DOI 10.1103/PhysRevB.71.035429, 035429
-
R. Barnett, E. Demler, and E. Kaxiras, Phys. Rev. B 71, 035429 (2005). 10.1103/PhysRevB.71.035429 (Pubitemid 40396480)
-
(2005)
Physical Review B - Condensed Matter and Materials Physics
, vol.71
, Issue.3
, pp. 1-22
-
-
Barnett, R.1
Demler, E.2
Kaxiras, E.3
-
10
-
-
42149162851
-
-
10.1103/PhysRevB.77.165417
-
T. Koretsune and S. Saito, Phys. Rev. B 77, 165417 (2008). 10.1103/PhysRevB.77.165417
-
(2008)
Phys. Rev. B
, vol.77
, pp. 165417
-
-
Koretsune, T.1
Saito, S.2
-
11
-
-
33144487494
-
Superconductivity in entirely end-bonded multiwalled carbon nanotubes
-
DOI 10.1103/PhysRevLett.96.057001
-
I. Takesue, J. Haruyama, N. Kobayashi, S. Chiashi, S. Maruyama, T. Sugai, and H. Shinohara, Phys. Rev. Lett. 96, 057001 (2006). 10.1103/PhysRevLett.96. 057001 (Pubitemid 43270987)
-
(2006)
Physical Review Letters
, vol.96
, Issue.5
, pp. 057001
-
-
Takesue, I.1
Haruyama, J.2
Kobayashi, N.3
Chiashi, S.4
Maruyama, S.5
Sugai, T.6
Shinohara, H.7
-
12
-
-
37549037407
-
-
10.1103/PhysRevB.76.245424
-
N. Murata, J. Haruyama, Y. Ueda, M. Matsudaira, H. Karino, Y. Yagi, E. Einarsson, S. Chiashi, S. Maruyama, T. Sugai, N. Kishi, and H. Shinohara, Phys. Rev. B 76, 245424 (2007). 10.1103/PhysRevB.76.245424
-
(2007)
Phys. Rev. B
, vol.76
, pp. 245424
-
-
Murata, N.1
Haruyama, J.2
Ueda, Y.3
Matsudaira, M.4
Karino, H.5
Yagi, Y.6
Einarsson, E.7
Chiashi, S.8
Maruyama, S.9
Sugai, T.10
Kishi, N.11
Shinohara, H.12
-
13
-
-
43849088830
-
-
10.1016/j.physe.2007.12.005
-
M. Matsudaira, J. Haruyama, N. Murata, Y. Yagi, E. Einarsson, S. Maruyama, T. Sugai, and H. Shinohara, Physica E 40, 2299 (2008). 10.1016/j.physe.2007.12.005
-
(2008)
Physica e
, vol.40
, pp. 2299
-
-
Matsudaira, M.1
Haruyama, J.2
Murata, N.3
Yagi, Y.4
Einarsson, E.5
Maruyama, S.6
Sugai, T.7
Shinohara, H.8
-
14
-
-
7244238797
-
-
10.1103/PhysRevB.59.10928
-
U. D. Venkateswaran, A. M. Rao, E. Richter, M. Menon, A. Rinzler, R. E. Smalley, and P. C. Eklund, Phys. Rev. B 59, 10928 (1999). 10.1103/PhysRevB.59. 10928
-
(1999)
Phys. Rev. B
, vol.59
, pp. 10928
-
-
Venkateswaran, U.D.1
Rao, A.M.2
Richter, E.3
Menon, M.4
Rinzler, A.5
Smalley, R.E.6
Eklund, P.C.7
-
15
-
-
0035529146
-
-
10.1002/1521-3951(200101)223:1<225::AID-PSSB225>3.0.CO;2-6
-
U. D. Venkateswaran, E. A. Brandsen, U. Schlecht, A. M. Rao, E. Richter, I. Loa, K. Syassen, and P. C. Eklund, Phys. Status Solidi B 223, 225 (2001). 10.1002/1521-3951(200101)223:1<225::AID-PSSB225>3.0.CO;2-6
-
(2001)
Phys. Status Solidi B
, vol.223
, pp. 225
-
-
Venkateswaran, U.D.1
Brandsen, E.A.2
Schlecht, U.3
Rao, A.M.4
Richter, E.5
Loa, I.6
Syassen, K.7
Eklund, P.C.8
-
16
-
-
0004200710
-
-
edited by M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris (Springer-Verlag, Berlin
-
R. Saito, Carbon Nanotubes, edited by, M. S. Dresselhaus,,, G. Dresselhaus,, and, Ph. Avouris, (Springer-Verlag, Berlin, 2001).
-
(2001)
Carbon Nanotubes
-
-
Saito, R.1
-
17
-
-
77956678561
-
-
The measured pressure regions are different between Figs. and Figs. because in pressure-dependent Raman spectrum measurement for Figs. , the measurement system was unstable at P<100MPa and we could not perform exact observation, in contradiction to the magnetization measurement for Fig. . However, mostly linear relationship starting from P=0 [dotted lines in Fig. ] implies that the upshift of RBM frequency can occur even at P<100MPa
-
The measured pressure regions are different between Figs. and Figs. because in pressure-dependent Raman spectrum measurement for Figs., the measurement system was unstable at P < 100 MPa and we could not perform exact observation, in contradiction to the magnetization measurement for Fig.. However, mostly linear relationship starting from P = 0 [dotted lines in Fig.] implies that the upshift of RBM frequency can occur even at P < 100 MPa.
-
-
-
|