메뉴 건너뛰기




Volumn 47, Issue 7, 2010, Pages 1091-1103

Genetic programming approach for estimating the deformation modulus of rock mass using sensitivity analysis by neural network

Author keywords

Deformation modulus of rock mass; Genetic programming (GP); Relative strength of effect (RSE); Sensitivity analysis about the mean

Indexed keywords

COMPRESSIVE STRENGTH; DEFORMATION; FORECASTING; GENETIC ALGORITHMS; GENETIC PROGRAMMING; MEAN SQUARE ERROR; ROCK MECHANICS; ROCKS;

EID: 77956648398     PISSN: 13651609     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijrmms.2010.07.007     Document Type: Article
Times cited : (74)

References (56)
  • 1
    • 0000212966 scopus 로고
    • A nonlinear deformation modulus based on rock mass classification
    • Nicholson GA, Bieniawski ZT. A nonlinear deformation modulus based on rock mass classification. Int J Min Geol Eng 1990, 8:181-202.
    • (1990) Int J Min Geol Eng , vol.8 , pp. 181-202
    • Nicholson, G.A.1    Bieniawski, Z.T.2
  • 2
    • 0346528267 scopus 로고
    • Estimation of engineering parameters of rock mass
    • PhD thesis, Department of Civil Engineering, University of Roorkee, India
    • Mehrotra VK. Estimation of engineering parameters of rock mass. PhD thesis, Department of Civil Engineering, University of Roorkee, India, 1992.
    • (1992)
    • Mehrotra, V.K.1
  • 3
    • 0002764804 scopus 로고
    • RMi-a system for characterization of rock masses for rock engineering purposes
    • PhD thesis, University of Oslo
    • Palmstrom A. RMi-a system for characterization of rock masses for rock engineering purposes. PhD thesis, University of Oslo, 1995.
    • (1995)
    • Palmstrom, A.1
  • 4
    • 85088208530 scopus 로고    scopus 로고
    • Practical estimates of rock mass strength
    • Hoek E, Brown ET Practical estimates of rock mass strength. Int J Rock Mech Min Sci 1997, 34(8):1165-1186.
    • (1997) Int J Rock Mech Min Sci , vol.34 , Issue.8 , pp. 1165-1186
    • Hoek, E.1    Brown, E.T.2
  • 6
    • 0035322122 scopus 로고    scopus 로고
    • The deformation modulus of rock masses-comparisons between in-situ tests and indirect estimates
    • Palmstrom A, Singh R. The deformation modulus of rock masses-comparisons between in-situ tests and indirect estimates. Tunnelling Underground Space Technol 2001, 16:115-131.
    • (2001) Tunnelling Underground Space Technol , vol.16 , pp. 115-131
    • Palmstrom, A.1    Singh, R.2
  • 7
    • 0036464277 scopus 로고    scopus 로고
    • Some new Q value correlations to assist in site characterisation andtunnel design
    • Barton N. Some new Q value correlations to assist in site characterisation andtunnel design. Int J Rock Mech Min Sci 2002, 39:185-216.
    • (2002) Int J Rock Mech Min Sci , vol.39 , pp. 185-216
    • Barton, N.1
  • 10
    • 0346911808 scopus 로고    scopus 로고
    • Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system
    • Cai M, Kaiser PK, Uno H, Tasaka Y, Minami M. Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system. Int J Rock Mech Min Sci 2004, 41:3-19.
    • (2004) Int J Rock Mech Min Sci , vol.41 , pp. 3-19
    • Cai, M.1    Kaiser, P.K.2    Uno, H.3    Tasaka, Y.4    Minami, M.5
  • 11
    • 85154557221 scopus 로고    scopus 로고
    • Estimation of rock mass modulus. Personal communications
    • Carvalho J. Estimation of rock mass modulus. Personal communications, 2004.
    • (2004)
    • Carvalho, J.1
  • 12
    • 3042641178 scopus 로고    scopus 로고
    • Indirect determination of the modulus of deformation of rock masses based on the GSI system
    • Sonmez H, Gokceoglu C, Ulusay R. Indirect determination of the modulus of deformation of rock masses based on the GSI system. Int J Rock Mech Min Sci 2004, 41:849-857.
    • (2004) Int J Rock Mech Min Sci , vol.41 , pp. 849-857
    • Sonmez, H.1    Gokceoglu, C.2    Ulusay, R.3
  • 13
    • 0742287772 scopus 로고    scopus 로고
    • Using RQD to estimate the deformation modulus of rock masses
    • Zhang L, Einstein HH. Using RQD to estimate the deformation modulus of rock masses. Int J Rock Mech Min Sci 2004, 41:337-341.
    • (2004) Int J Rock Mech Min Sci , vol.41 , pp. 337-341
    • Zhang, L.1    Einstein, H.H.2
  • 14
    • 53549091605 scopus 로고    scopus 로고
    • Bieniawski evalution of the deformation modulus of rock masses: comparison of pressurmeter and dilatometer tests with RMR prediction
    • Jose M, Galeral M, Álvarez ZT. Bieniawski evalution of the deformation modulus of rock masses: comparison of pressurmeter and dilatometer tests with RMR prediction. In: Proceedings of the ISP5-PRESSIO international symposium, 2005.
    • (2005) Proceedings of the ISP5-PRESSIO international symposium
    • Jose, M.1    Galeral, M.2    Álvarez, Z.T.3
  • 15
    • 30344476716 scopus 로고    scopus 로고
    • Empirical estimation of rock mass modulus
    • Hoek E, Diederichs MS. Empirical estimation of rock mass modulus. Int J Rock Mech Min Sci 2006, 43:203-215.
    • (2006) Int J Rock Mech Min Sci , vol.43 , pp. 203-215
    • Hoek, E.1    Diederichs, M.S.2
  • 16
    • 30344474020 scopus 로고    scopus 로고
    • Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation
    • Sonmez H, Gokceoglu C, Nefeslioglu HA, Kayabasi A. Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation. Int J Rock Mech Min Sci 2006, 43:224-235.
    • (2006) Int J Rock Mech Min Sci , vol.43 , pp. 224-235
    • Sonmez, H.1    Gokceoglu, C.2    Nefeslioglu, H.A.3    Kayabasi, A.4
  • 17
    • 3142656652 scopus 로고    scopus 로고
    • A neuro-fuzzy model for modulus of deformation of jointed rock masses
    • Gokceoglu C, Yesilnacar E, Sonmez H, Kayabasi A. A neuro-fuzzy model for modulus of deformation of jointed rock masses. Comp Geotech 2005, 31:375-383.
    • (2005) Comp Geotech , vol.31 , pp. 375-383
    • Gokceoglu, C.1    Yesilnacar, E.2    Sonmez, H.3    Kayabasi, A.4
  • 18
    • 3042636949 scopus 로고    scopus 로고
    • Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara agglomerate
    • Sonmez H, Tuncay E, Gokceoglu C. Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara agglomerate. Int J Rock Mech Min Sci 2004, 41(5):717-729.
    • (2004) Int J Rock Mech Min Sci , vol.41 , Issue.5 , pp. 717-729
    • Sonmez, H.1    Tuncay, E.2    Gokceoglu, C.3
  • 22
    • 85088208530 scopus 로고    scopus 로고
    • Practical estimates of rock mass strength
    • Hoek E, Brown ET. Practical estimates of rock mass strength. Int J Rock Mech Min Sci 1997, 34(8):1165-1186.
    • (1997) Int J Rock Mech Min Sci , vol.34 , Issue.8 , pp. 1165-1186
    • Hoek, E.1    Brown, E.T.2
  • 23
    • 0033197681 scopus 로고    scopus 로고
    • Modifications to the geological strength index (GSI) and their applicability to stability of slopes
    • Sonmez H, Ulusay R. Modifications to the geological strength index (GSI) and their applicability to stability of slopes. Int J Rock Mech Min Sci 1999, 36(6):743-760.
    • (1999) Int J Rock Mech Min Sci , vol.36 , Issue.6 , pp. 743-760
    • Sonmez, H.1    Ulusay, R.2
  • 25
    • 33644618979 scopus 로고    scopus 로고
    • Discussion of the paper by E. Hoek and M.S. Diederichs "Empirical estimation of rock mass modulus"
    • Int J Rock Mech Min Sci
    • Sonmez H, Gokceoglu C. Discussion of the paper by E. Hoek and M.S. Diederichs "Empirical estimation of rock mass modulus". Int J Rock Mech Min Sci 2006;43(4):671-6.
    • (2006) , vol.43 , Issue.4 , pp. 671-676
    • Sonmez, H.1    Gokceoglu, C.2
  • 26
    • 0036926082 scopus 로고    scopus 로고
    • A discussion on the Hoek-Brown failure criterion and suggested modifications to the criterion verified by slope stability case studies
    • Sonmez H, Ulusay R. A discussion on the Hoek-Brown failure criterion and suggested modifications to the criterion verified by slope stability case studies. Yerbilimleri 2002, 26:77-99.
    • (2002) Yerbilimleri , vol.26 , pp. 77-99
    • Sonmez, H.1    Ulusay, R.2
  • 27
    • 85154619023 scopus 로고    scopus 로고
    • MATLAB. Statistics toolbox for use with MATLAB. User's guide version 5. The MathWorks Inc.;
    • MATLAB. Statistics toolbox for use with MATLAB. User's guide version 5. The MathWorks Inc.; 2006.
    • (2006)
  • 28
    • 0035251579 scopus 로고    scopus 로고
    • Prediction of strength properties of some schistose rocks from petrographic properties using artificial neural networks
    • Singh VK, Singh D, Singh TN. Prediction of strength properties of some schistose rocks from petrographic properties using artificial neural networks. Int J Rock Mech Min Sci 2001, 38:269-284.
    • (2001) Int J Rock Mech Min Sci , vol.38 , pp. 269-284
    • Singh, V.K.1    Singh, D.2    Singh, T.N.3
  • 29
    • 24144466551 scopus 로고    scopus 로고
    • Slope stability evaluation using back propagation neural networks
    • Wang HB, Xu WY, Xu RC. Slope stability evaluation using back propagation neural networks. Eng Geol 2005, 80:302-315.
    • (2005) Eng Geol , vol.80 , pp. 302-315
    • Wang, H.B.1    Xu, W.Y.2    Xu, R.C.3
  • 30
    • 38349077120 scopus 로고    scopus 로고
    • Prediction of uniaxial compressive strength of sandstones using petrography-based models
    • Zorlu K, Gokceoglu C, Ocakoglu F, Nefeslioglu HA, Acikalin S. Prediction of uniaxial compressive strength of sandstones using petrography-based models. Eng Geol. 96 2008, 141-158.
    • (2008) Eng Geol. 96 , pp. 141-158
    • Zorlu, K.1    Gokceoglu, C.2    Ocakoglu, F.3    Nefeslioglu, H.A.4    Acikalin, S.5
  • 31
    • 43649100157 scopus 로고    scopus 로고
    • Predicting intact rock strength for mechanical excavation using multivariate statistics, artificial neural networks, and regression trees
    • Tiryaki B. Predicting intact rock strength for mechanical excavation using multivariate statistics, artificial neural networks, and regression trees. Eng Geol 2008, 99:51-60.
    • (2008) Eng Geol , vol.99 , pp. 51-60
    • Tiryaki, B.1
  • 32
    • 76349098222 scopus 로고    scopus 로고
    • Evolving neural network using a genetic algorithm for predicting the deformation modulus of rock masses
    • Majdi A, Beiki M. Evolving neural network using a genetic algorithm for predicting the deformation modulus of rock masses. Int J Rock Mech Min Sci 2010, 47:246-253.
    • (2010) Int J Rock Mech Min Sci , vol.47 , pp. 246-253
    • Majdi, A.1    Beiki, M.2
  • 34
    • 0034325073 scopus 로고    scopus 로고
    • Selection of methodology for modeling hysteresis behavior of soils using neural networks
    • Baheer I. Selection of methodology for modeling hysteresis behavior of soils using neural networks. J Comput Aided Civil Infrastruct Eng 2000, 5(6):445-463.
    • (2000) J Comput Aided Civil Infrastruct Eng , vol.5 , Issue.6 , pp. 445-463
    • Baheer, I.1
  • 36
    • 0002983776 scopus 로고
    • Statistical aspects of neural networks
    • Chapman & Hall, London, O.E. Barndoff-Neilsen, J.L. Jensen, W.S. Kendall (Eds.)
    • Ripley BD. Statistical aspects of neural networks. Networks and chaos-statistical and probabilistic aspects 1993, 40-123. Chapman & Hall, London. O.E. Barndoff-Neilsen, J.L. Jensen, W.S. Kendall (Eds.).
    • (1993) Networks and chaos-statistical and probabilistic aspects , pp. 40-123
    • Ripley, B.D.1
  • 37
    • 0242683097 scopus 로고
    • Neural network classification of multispectral imagery
    • MSc thesis, University of Arizona, Tucson
    • Paola JD. Neural network classification of multispectral imagery. MSc thesis, University of Arizona, Tucson, 1994.
    • (1994)
    • Paola, J.D.1
  • 38
    • 0347406814 scopus 로고
    • A theory of generalization in learning machines with neural application
    • PhD thesis, University of Pennsylvania, Philadelphia
    • Wang C. A theory of generalization in learning machines with neural application. PhD thesis, University of Pennsylvania, Philadelphia, 1994.
    • (1994)
    • Wang, C.1
  • 40
    • 0031106314 scopus 로고    scopus 로고
    • Strategies and best practice for neural network image classification
    • Kanellopoulas I, Wilkinson GG. Strategies and best practice for neural network image classification. Int J Remote Sensing 1997, 18:711-725.
    • (1997) Int J Remote Sensing , vol.18 , pp. 711-725
    • Kanellopoulas, I.1    Wilkinson, G.G.2
  • 41
    • 0031077904 scopus 로고    scopus 로고
    • Prediction of fracture toughness using artificial neural networks (ANNs)
    • Seibi A, Al-Alawi SM. Prediction of fracture toughness using artificial neural networks (ANNs). Eng Fract Mech 1997, 56:311-319.
    • (1997) Eng Fract Mech , vol.56 , pp. 311-319
    • Seibi, A.1    Al-Alawi, S.M.2
  • 42
    • 0032169593 scopus 로고    scopus 로고
    • The application of neural network to rock engineering system (RES)
    • Yang Y, Zhang Q. The application of neural network to rock engineering system (RES). Int J Rock Mech Min Sci 1999, 35:727-745.
    • (1999) Int J Rock Mech Min Sci , vol.35 , pp. 727-745
    • Yang, Y.1    Zhang, Q.2
  • 43
    • 0034895715 scopus 로고    scopus 로고
    • Neural network based prediction of ground surface settlement due to tunneling
    • Kim CY, Bae GJ, Hong SW, Park CH, Moon HK, Shin HS. Neural network based prediction of ground surface settlement due to tunneling. Comp Geotech 2001, 28:517-547.
    • (2001) Comp Geotech , vol.28 , pp. 517-547
    • Kim, C.Y.1    Bae, G.J.2    Hong, S.W.3    Park, C.H.4    Moon, H.K.5    Shin, H.S.6
  • 44
    • 85154551353 scopus 로고    scopus 로고
    • NeuroSolutions for Excel, Help version: 4.30. NeuroDimension Inc.;
    • NeuroSolutions for Excel, Help version: 4.30. NeuroDimension Inc.; 2004.
    • (2004)
  • 46
    • 33846424315 scopus 로고    scopus 로고
    • Genetic programming approach for predicting surface subsidence induced by mining
    • Shuhua Z, Qian G, Jianguo S. Genetic programming approach for predicting surface subsidence induced by mining. J China Univ Geosci 2006, 17(4):361-366.
    • (2006) J China Univ Geosci , vol.17 , Issue.4 , pp. 361-366
    • Shuhua, Z.1    Qian, G.2    Jianguo, S.3
  • 47
    • 34247166626 scopus 로고    scopus 로고
    • Fuzzy genetic programming method for analysis of ground movements due to underground mining
    • Li WX, Dai LF, Houa XB, Lei W. Fuzzy genetic programming method for analysis of ground movements due to underground mining. Int J Rock Mech Min Sci 2007, 44:954-961.
    • (2007) Int J Rock Mech Min Sci , vol.44 , pp. 954-961
    • Li, W.X.1    Dai, L.F.2    Houa, X.B.3    Lei, W.4
  • 48
    • 44949162150 scopus 로고    scopus 로고
    • Prediction of compressive and tensile strength of limestone via genetic programming
    • Baykasoglu A, Gullu H, Canakci H, Ozbakir L. Prediction of compressive and tensile strength of limestone via genetic programming. Expert Syst Appl 2008, 35:111-123.
    • (2008) Expert Syst Appl , vol.35 , pp. 111-123
    • Baykasoglu, A.1    Gullu, H.2    Canakci, H.3    Ozbakir, L.4
  • 50
    • 35248857899 scopus 로고    scopus 로고
    • Dynamic maximum tree depth-a simple technique for avoiding bloat in tree-based GP
    • Springer, Berlin, E. Cantu-Paz, J.A. Foster, K. Deb (Eds.)
    • Silva S, Almeida J Dynamic maximum tree depth-a simple technique for avoiding bloat in tree-based GP. Proceedings of the GECC0 2003 2003, 1776-1787. Springer, Berlin. E. Cantu-Paz, J.A. Foster, K. Deb (Eds.).
    • (2003) Proceedings of the GECC0 2003 , pp. 1776-1787
    • Silva, S.1    Almeida, J.2
  • 52
    • 85154612620 scopus 로고    scopus 로고
    • A field guide to genetic programming, ISBN978-1-4092-0073-4, Available from: 〈,
    • Poli R, Langdon WB, McPhee NF, Koza JR. A field guide to genetic programming, ISBN978-1-4092-0073-4, 2008. Available from: 〈http://creativecommons.org/licenses/by-nc-nd/2.0/uk/and rang;.
    • (2008)
    • Poli, R.1    Langdon, W.B.2    McPhee, N.F.3    Koza, J.R.4
  • 53
    • 10444269430 scopus 로고    scopus 로고
    • Prediction of surface roughness with genetic programming
    • Brezocnik M, Kovacic M, Ficko M. Prediction of surface roughness with genetic programming. J Mater Proc Technol 2004, 157-158:28-36.
    • (2004) J Mater Proc Technol , pp. 28-36
    • Brezocnik, M.1    Kovacic, M.2    Ficko, M.3
  • 54
    • 0003442726 scopus 로고
    • Genetic programming II
    • MIT Press
    • Koza JR. Genetic programming II. Cambridge, MA 1994, MIT Press.
    • (1994) Cambridge, MA
    • Koza, J.R.1
  • 55
    • 44949250034 scopus 로고    scopus 로고
    • Dynamic proportion portfolio insurance using genetic programming with principal component analysis
    • Chen JS, Chang CL, Hou JL, Lin YT. Dynamic proportion portfolio insurance using genetic programming with principal component analysis. Expert Syst Appl 2008, 35:273-278.
    • (2008) Expert Syst Appl , vol.35 , pp. 273-278
    • Chen, J.S.1    Chang, C.L.2    Hou, J.L.3    Lin, Y.T.4
  • 56
    • 60349106809 scopus 로고    scopus 로고
    • Modelling damping ratio and shear modulus of sand-mica mixtures using genetic programming
    • Abdulkadir C, Cabalar AF. Modelling damping ratio and shear modulus of sand-mica mixtures using genetic programming. Expert Syst Appl 2009, 36:7749-7757.
    • (2009) Expert Syst Appl , vol.36 , pp. 7749-7757
    • Abdulkadir, C.1    Cabalar, A.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.