메뉴 건너뛰기




Volumn 16, Issue 9-10, 2010, Pages 359-371

PRAS40 regulates protein synthesis and cell cycle in C2C12 myoblasts

Author keywords

[No Author keywords available]

Indexed keywords

BINDING PROTEIN; CASPASE 3; DNA; INITIATION FACTOR 4E BINDING PROTEIN 1; LENTIVIRUS VECTOR; MAMMALIAN TARGET OF RAPAMYCIN; MESSENGER RNA; MYOSIN HEAVY CHAIN; PRAS40 PROTEIN; PROTEIN P21; RETINOBLASTOMA PROTEIN; SHORT HAIRPIN RNA; UNCLASSIFIED DRUG;

EID: 77956626055     PISSN: 10761551     EISSN: None     Source Type: Journal    
DOI: 10.2119/molmed.2009.00168     Document Type: Article
Times cited : (33)

References (51)
  • 1
    • 31544466776 scopus 로고    scopus 로고
    • Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis
    • Kimball SR, Jefferson LS. (2006) Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. J. Nutr. 136 (Suppl. 1): 227S-31S.
    • (2006) J. Nutr , vol.136 , Issue.SUPPL. 1
    • Kimball, S.R.1    Jefferson, L.S.2
  • 2
    • 0036081155 scopus 로고    scopus 로고
    • Contribution of insulin to the translational control of protein synthesis in skeletal muscle by leucine
    • Anthony JC, et al. (2002) Contribution of insulin to the translational control of protein synthesis in skeletal muscle by leucine. Am. J. Physiol. Endocrinol. Metab. 282:E1092-101.
    • (2002) Am. J. Physiol. Endocrinol. Metab , vol.282
    • Anthony, J.C.1
  • 3
    • 33644670831 scopus 로고    scopus 로고
    • Hindlimb casting decreases muscle mass in part by proteasome- dependent proteolysis but independent of protein synthesis
    • Krawiec BJ, Frost RA, Vary TC, Jefferson LS, Lang CH. (2005) Hindlimb casting decreases muscle mass in part by proteasome- dependent proteolysis but independent of protein synthesis. Am. J. Physiol. Endocrinol. Metab. 289:E969-80.
    • (2005) Am. J. Physiol. Endocrinol. Metab , vol.289
    • Krawiec, B.J.1    Frost, R.A.2    Vary, T.C.3    Jefferson, L.S.4    Lang, C.H.5
  • 4
    • 62749096589 scopus 로고    scopus 로고
    • Mammalian target of rapamycin complex 1: Signalling inputs, substrates and feedback mechanisms
    • Dunlop EA, Tee AT. (2009) Mammalian target of rapamycin complex 1: signalling inputs, substrates and feedback mechanisms. Cell Signal 21:827-35.
    • (2009) Cell Signal , vol.21 , pp. 827-835
    • Dunlop, E.A.1    Tee, A.T.2
  • 6
    • 4043171462 scopus 로고    scopus 로고
    • Upstream and downstream of mTOR
    • Hay N, Sonenberg N. (2004) Upstream and downstream of mTOR. Genes Dev. 18:1926-45.
    • (2004) Genes Dev , vol.18 , pp. 1926-1945
    • Hay, N.1    Sonenberg, N.2
  • 7
    • 57649096459 scopus 로고    scopus 로고
    • mTOR: What does it do? Transplant
    • Hall MN. (2008) mTOR: what does it do? Transplant. Proc. 40 (Suppl. 10):S5-8.
    • (2008) Proc , vol.40 , Issue.SUPPL. 10
    • Hall, M.N.1
  • 8
    • 0034644525 scopus 로고    scopus 로고
    • TOR, a central controller of cell growth
    • Schmelzle T, Hall MN. (2000) TOR, a central controller of cell growth. Cell 103:253-62.
    • (2000) Cell , vol.103 , pp. 253-262
    • Schmelzle, T.1    Hall, M.N.2
  • 9
    • 64149090178 scopus 로고    scopus 로고
    • mTOR in growth and protection of hypertrophying myocardium
    • Balasubramanian S, et al. (2009) mTOR in growth and protection of hypertrophying myocardium. Cardiovasc. Hematol. Agents Med. Chem. 7:52-63.
    • (2009) Cardiovasc. Hematol. Agents Med. Chem , vol.7 , pp. 52-63
    • Balasubramanian, S.1
  • 10
    • 27744569843 scopus 로고    scopus 로고
    • mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events
    • Holz MK, Ballif BA, Gygi SP, Blenis J. (2005) mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123:569-80.
    • (2005) Cell , vol.123 , pp. 569-580
    • Holz, M.K.1    Ballif, B.A.2    Gygi, S.P.3    Blenis, J.4
  • 11
    • 0037178786 scopus 로고    scopus 로고
    • mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
    • Kim DH, et al. (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163-75.
    • (2002) Cell , vol.110 , pp. 163-175
    • Kim, D.H.1
  • 12
    • 67349241955 scopus 로고    scopus 로고
    • DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival
    • Peterson TR, et al. (2009) DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137:873-86.
    • (2009) Cell , vol.137 , pp. 873-886
    • Peterson, T.R.1
  • 13
    • 0344464784 scopus 로고    scopus 로고
    • Alcohol impairs leucinemediated phosphorylation of 4E-BP1, S6K1, eIF4G, and mTOR in skeletal muscle
    • Lang CH, et al. (2003) Alcohol impairs leucinemediated phosphorylation of 4E-BP1, S6K1, eIF4G, and mTOR in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 285:E1205-15.
    • (2003) Am. J. Physiol. Endocrinol. Metab , vol.285
    • Lang, C.H.1
  • 14
    • 0037855834 scopus 로고    scopus 로고
    • Identification of a proline- rich Akt substrate as a 14-3-3 binding partner
    • Kovacina KS, et al. (2003) Identification of a proline- rich Akt substrate as a 14-3-3 binding partner. J. Biol. Chem. 278:10189-94.
    • (2003) J. Biol. Chem , vol.278 , pp. 10189-10194
    • Kovacina, K.S.1
  • 15
    • 33947264077 scopus 로고    scopus 로고
    • PRAS40 is an insulinregulated inhibitor of the mTORC1 protein kinase
    • Sancak Y, et al. (2007) PRAS40 is an insulinregulated inhibitor of the mTORC1 protein kinase. Mol. Cell. 25:903-15.
    • (2007) Mol. Cell , vol.25 , pp. 903-915
    • Sancak, Y.1
  • 16
    • 47049127002 scopus 로고    scopus 로고
    • Regulation of proline-rich Akt substrate of 40 kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation
    • Wang L, Harris TE, Lawrence JC Jr. (2008) Regulation of proline-rich Akt substrate of 40 kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation. J. Biol. Chem. 283:15619-27.
    • (2008) J. Biol. Chem , vol.283 , pp. 15619-15627
    • Wang, L.1    Harris, T.E.2    Lawrence Jr., J.C.3
  • 17
    • 34547133519 scopus 로고    scopus 로고
    • The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1
    • Oshiro N, et al. (2007) The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J. Biol. Chem. 282:20329-39.
    • (2007) J. Biol. Chem , vol.282 , pp. 20329-20339
    • Oshiro, N.1
  • 18
    • 34548359244 scopus 로고    scopus 로고
    • PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex
    • Fonseca BD, Smith EM, Lee VH, MacKintosh C, Proud CG. (2007) PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex. J. Biol. Chem. 282:24514-24.
    • (2007) J. Biol. Chem , vol.282 , pp. 24514-24524
    • Fonseca, B.D.1    Smith, E.M.2    Lee, V.H.3    Mackintosh, C.4    Proud, C.G.5
  • 19
    • 33745836687 scopus 로고    scopus 로고
    • Time course changes in signaling pathways and protein synthesis in C2C12 myotubes following AMPK activation by AICAR
    • Williamson DL, Bolster DR, Kimball SR, Jefferson LS. (2006) Time course changes in signaling pathways and protein synthesis in C2C12 myotubes following AMPK activation by AICAR. Am. J. Physiol. Endocrinol. Metab. 291:E80-9.
    • (2006) Am. J. Physiol. Endocrinol. Metab , vol.291
    • Williamson, D.L.1    Bolster, D.R.2    Kimball, S.R.3    Jefferson, L.S.4
  • 20
    • 0030924558 scopus 로고    scopus 로고
    • Transient exposure of human myoblasts to tumor necrosis factor-alpha inhibits serum and insulin-like growth factor-I stimulated protein synthesis
    • Frost RA, Lang CH, Gelato MC. (1997) Transient exposure of human myoblasts to tumor necrosis factor-alpha inhibits serum and insulin-like growth factor-I stimulated protein synthesis. Endocrinology 138:4153-9.
    • (1997) Endocrinology , vol.138 , pp. 4153-4159
    • Frost, R.A.1    Lang, C.H.2    Gelato, M.C.3
  • 22
    • 33947530921 scopus 로고    scopus 로고
    • Alcohol regulates eukaryotic elongation factor 2 phosphorylation via an AMP-activated protein kinase-dependent mechanism in C2C12 skeletal myocytes
    • Hong-Brown LQ, Brown CR, Huber DS, Lang CH. (2007) Alcohol regulates eukaryotic elongation factor 2 phosphorylation via an AMP-activated protein kinase-dependent mechanism in C2C12 skeletal myocytes. J. Biol. Chem. 282:3702-12.
    • (2007) J. Biol. Chem , vol.282 , pp. 3702-3712
    • Hong-Brown, L.Q.1    Brown, C.R.2    Huber, D.S.3    Lang, C.H.4
  • 24
    • 34249703500 scopus 로고    scopus 로고
    • AMP-activated protein kinase agonists increase mRNA content of the musclespecific ubiquitin ligases MAFbx and MuRF1 in C2C12 cells
    • Krawiec BJ, Nystrom GJ, Frost RA, Jefferson LS, Lang CH. (2007) AMP-activated protein kinase agonists increase mRNA content of the musclespecific ubiquitin ligases MAFbx and MuRF1 in C2C12 cells. Am. J. Physiol. Endocrinol. Metab. 292:E1555-67.
    • (2007) Am. J. Physiol. Endocrinol. Metab , vol.292
    • Krawiec, B.J.1    Nystrom, G.J.2    Frost, R.A.3    Jefferson, L.S.4    Lang, C.H.5
  • 25
    • 42549141544 scopus 로고    scopus 로고
    • Acute alcohol intoxication increases REDD1 in skeletal muscle. Alcohol Clin
    • Lang CH, Frost RA, Vary TC. (2008) Acute alcohol intoxication increases REDD1 in skeletal muscle. Alcohol Clin. Exp. Res. 32:796-805.
    • (2008) Exp. Res , vol.32 , pp. 796-805
    • Lang, C.H.1    Frost, R.A.2    Vary, T.C.3
  • 26
    • 0345602738 scopus 로고    scopus 로고
    • Comparison of the chemopreventive efficacies of 1,4-phenylenebis(methylene)selenocyanate and selenium-enriched yeast on 4-(methylnitrosamino)- 1-(3-pyridyl)-1-butanone induced lung tumorigenesis in A/J mouse
    • Das A, Desai D, Pittman B, Amin S, El-Bayoumy K. (2003) Comparison of the chemopreventive efficacies of 1,4-phenylenebis(methylene)selenocyanate and selenium-enriched yeast on 4-(methylnitrosamino)- 1-(3-pyridyl)-1-butanone induced lung tumorigenesis in A/J mouse. Nutr. Cancer 46:179-85.
    • (2003) Nutr. Cancer , vol.46 , pp. 179-185
    • Das, A.1    Desai, D.2    Pittman, B.3    Amin, S.4    El-Bayoumy, K.5
  • 28
    • 57449120941 scopus 로고    scopus 로고
    • Autophagy: A new phase in the maturation of growth plate chondrocytes is regulated by HIF, mTOR and AMP kinase
    • Srinivas V, Bohensky J, Shapiro IM. (2009) Autophagy: a new phase in the maturation of growth plate chondrocytes is regulated by HIF, mTOR and AMP kinase. Cells Tissues Organs 189:88-92.
    • (2009) Cells Tissues Organs , vol.189 , pp. 88-92
    • Srinivas, V.1    Bohensky, J.2    Shapiro, I.M.3
  • 29
    • 39149111914 scopus 로고    scopus 로고
    • Roles of autophagy and mTOR signaling in neuronal differentiation of mouse neuroblastoma cells
    • Zeng M, Zhou JN. (2008) Roles of autophagy and mTOR signaling in neuronal differentiation of mouse neuroblastoma cells. Cell Signal 20:659-65.
    • (2008) Cell Signal , vol.20 , pp. 659-665
    • Zeng, M.1    Zhou, J.N.2
  • 30
    • 33745307617 scopus 로고    scopus 로고
    • Ras, PI(3)K and mTOR signalling controls tumour cell growth
    • Shaw RJ, Cantley LC. (2006) Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441:424-30.
    • (2006) Nature , vol.441 , pp. 424-430
    • Shaw, R.J.1    Cantley, L.C.2
  • 31
    • 0345732640 scopus 로고    scopus 로고
    • mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E
    • Fingar DC, et al. (2004) mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol. Cell. Biol. 24:200-16.
    • (2004) Mol. Cell. Biol , vol.24 , pp. 200-216
    • Fingar, D.C.1
  • 32
    • 0037097863 scopus 로고    scopus 로고
    • Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E
    • Fingar DC, Salama S, Tsou C, Harlow E, Blenis J. (2002) Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes. Dev. 16:1472-87.
    • (2002) Genes. Dev , vol.16 , pp. 1472-1487
    • Fingar, D.C.1    Salama, S.2    Tsou, C.3    Harlow, E.4    Blenis, J.5
  • 33
    • 34248545489 scopus 로고    scopus 로고
    • PRAS40 deregulates apoptosis in malignant melanoma
    • Madhunapantula SV, Sharma A, Robertson GP. (2007) PRAS40 deregulates apoptosis in malignant melanoma. Cancer Res. 67:3626-36.
    • (2007) Cancer Res , vol.67 , pp. 3626-3636
    • Madhunapantula, S.V.1    Sharma, A.2    Robertson, G.P.3
  • 34
    • 43249124698 scopus 로고    scopus 로고
    • PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis
    • Thedieck K, et al. (2007) PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS One 2:e1217.
    • (2007) PLoS One , vol.2
    • Thedieck, K.1
  • 35
    • 66749167618 scopus 로고    scopus 로고
    • Smad2 and 3 transcription factors control muscle mass in adulthood
    • Sartori R, et al. (2009) Smad2 and 3 transcription factors control muscle mass in adulthood. Am. J. Physiol. Cell. Physiol. 296:C1248-57.
    • (2009) Am. J. Physiol. Cell. Physiol , vol.296
    • Sartori, R.1
  • 36
  • 37
    • 0035923594 scopus 로고    scopus 로고
    • FRAP/mTOR is required for proliferation and patterning during embryonic development in the mouse
    • Hentges KE, et al. (2001) FRAP/mTOR is required for proliferation and patterning during embryonic development in the mouse. Proc. Natl. Acad. Sci. U. S. A. 98:13796-801.
    • (2001) Proc. Natl. Acad. Sci. U. S. A , vol.98 , pp. 13796-13801
    • Hentges, K.E.1
  • 38
    • 77956642799 scopus 로고    scopus 로고
    • Effect of rapamycin on leukemia cell lines [in Chinese]
    • Zhang LH, Lin FR. (2009) Effect of rapamycin on leukemia cell lines [in Chinese]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 17:870-3.
    • (2009) Zhongguo Shi Yan Xue Ye Xue Za Zhi , vol.17 , pp. 870-873
    • Zhang, L.H.1    Lin, F.R.2
  • 39
    • 74049128836 scopus 로고    scopus 로고
    • Rapamycin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation and induction of apoptosis
    • Shafer A, Zhou C, Gehrig PA, Boggess JF, Bae-Jump VL. (2010) Rapamycin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation and induction of apoptosis. Int. J. Cancer 126:1144-54.
    • (2010) Int. J. Cancer , vol.126 , pp. 1144-1154
    • Shafer, A.1    Zhou, C.2    Gehrig, P.A.3    Boggess, J.F.4    Bae-Jump, V.L.5
  • 40
    • 68749116494 scopus 로고    scopus 로고
    • Functional interaction of mammalian target of rapamycin complexes in regulating mammalian cell size and cell cycle
    • Rosner M, Fuchs C, Siegel N, Valli A, Hengstschlager M. (2009) Functional interaction of mammalian target of rapamycin complexes in regulating mammalian cell size and cell cycle. Hum. Mol. Genet. 18:3298-310.
    • (2009) Hum. Mol. Genet , vol.18 , pp. 3298-3310
    • Rosner, M.1    Fuchs, C.2    Siegel, N.3    Valli, A.4    Hengstschlager, M.5
  • 41
    • 0035929359 scopus 로고    scopus 로고
    • Cell cycle regulation via p53 phosphorylation by a 5′-AMP activated protein kinase activator, 5-aminoimidazole- 4-carboxamide-1- beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line
    • Imamura K, Ogura T, Kishimoto A, Kaminishi M, Esumi H. (2001) Cell cycle regulation via p53 phosphorylation by a 5′-AMP activated protein kinase activator, 5-aminoimidazole- 4-carboxamide-1- beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line. Biochem. Biophys. Res. Commun. 287:562-7.
    • (2001) Biochem. Biophys. Res. Commun , vol.287 , pp. 562-567
    • Imamura, K.1    Ogura, T.2    Kishimoto, A.3    Kaminishi, M.4    Esumi, H.5
  • 43
    • 0028978183 scopus 로고
    • Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control
    • Deng C, Zhang P, Harper JW, Elledge SJ, Leder P. (1995) Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82:675-84.
    • (1995) Cell , vol.82 , pp. 675-684
    • Deng, C.1    Zhang, P.2    Harper, J.W.3    Elledge, S.J.4    Leder, P.5
  • 44
    • 0033556237 scopus 로고    scopus 로고
    • p21(CIP1) and p57(KIP2) control muscle differentiation at the myogenin step
    • Zhang P, et al. (1999) p21(CIP1) and p57(KIP2) control muscle differentiation at the myogenin step. Genes. Dev. 13:213-24.
    • (1999) Genes. Dev , vol.13 , pp. 213-224
    • Zhang, P.1
  • 45
    • 0142052935 scopus 로고    scopus 로고
    • p21 is essential for normal myogenic progenitor cell function in regenerating skeletal muscle
    • Hawke TJ, et al. (2003) p21 is essential for normal myogenic progenitor cell function in regenerating skeletal muscle. Am. J. Physiol. Cell. Physiol. 285:C1019-27.
    • (2003) Am. J. Physiol. Cell. Physiol , vol.285
    • Hawke, T.J.1
  • 46
    • 64549124429 scopus 로고    scopus 로고
    • Involvement of a p53- independent and post-transcriptional upregulation for p21WAF/CIP1 following destabilization of the actin cytoskeleton
    • Lee YJ, et al. (2009) Involvement of a p53- independent and post-transcriptional upregulation for p21WAF/CIP1 following destabilization of the actin cytoskeleton. Int. J. Oncol. 34:581-9.
    • (2009) Int. J. Oncol , vol.34 , pp. 581-589
    • Lee, Y.J.1
  • 47
    • 0028986639 scopus 로고
    • p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells
    • Parker SB, et al. (1995) p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science 267:1024-7.
    • (1995) Science , vol.267 , pp. 1024-1027
    • Parker, S.B.1
  • 48
    • 43949109275 scopus 로고    scopus 로고
    • Downstream of Akt: FoxO3 and mTOR in the regulation of autophagy in skeletal muscle
    • Mammucari C, Schiaffino S, Sandri M. (2008) Downstream of Akt: FoxO3 and mTOR in the regulation of autophagy in skeletal muscle. Autophagy 4:524-6.
    • (2008) Autophagy , vol.4 , pp. 524-526
    • Mammucari, C.1    Schiaffino, S.2    Sandri, M.3
  • 49
    • 68549136609 scopus 로고    scopus 로고
    • mTOR, S6 and AKT expression in relation to proliferation and apoptosis/ autophagy in glioma
    • Annovazzi L, et al. (2009) mTOR, S6 and AKT expression in relation to proliferation and apoptosis/ autophagy in glioma. Anticancer Res. 29:3087-94.
    • (2009) Anticancer Res , vol.29 , pp. 3087-3094
    • Annovazzi, L.1
  • 51
    • 2642586352 scopus 로고    scopus 로고
    • Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease
    • Ravikumar B, et al. (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36:585-95.
    • (2004) Nat. Genet , vol.36 , pp. 585-595
    • Ravikumar, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.