-
2
-
-
84974753170
-
Convergence of approximation schemes for fully nonlinear second order equations
-
G. Barles and P.E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Anal. 4 (1991) 271-283.
-
(1991)
Asymptotic Anal.
, vol.4
, pp. 271-283
-
-
Barles, G.1
Souganidis, P.E.2
-
3
-
-
55349084784
-
On finite element methods for fully nonlinear elliptic equations of second order
-
K. Böhmer, On finite element methods for fully nonlinear elliptic equations of second order. SIAM J. Numer. Anal. 46 (2008) 1212-1249.
-
(2008)
SIAM J. Numer. Anal.
, vol.46
, pp. 1212-1249
-
-
Böhmer, K.1
-
4
-
-
3543081970
-
-
L.A. Caffarelli and M. Milman, Eds.,American Mathematical Society, Providence, USA
-
L.A. Caffarelli and M. Milman, Eds., Monge Amp̀ere equation: applications to geometry and optimization, Contemporary Mathematics 226. American Mathematical Society, Providence, USA (1999).
-
(1999)
Monge Amp̀ere Equation: Applications to Geometry and Optimization, Contemporary Mathematics
, vol.226
-
-
-
5
-
-
84990580987
-
The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Amp̀ere equation
-
L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Amp̀ere equation. Comm. Pure Appl. Math. 37 (1984) 369-402.
-
(1984)
Comm. Pure Appl. Math.
, vol.37
, pp. 369-402
-
-
Caffarelli, L.1
Nirenberg, L.2
Spruck, J.3
-
6
-
-
84967708673
-
User's guide to viscosity solutions of second order partial differential equations
-
M.G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 (1992) 1-67.
-
(1992)
Bull. Amer. Math. Soc. (N.S.)
, vol.27
, pp. 1-67
-
-
Crandall, M.G.1
Ishii, H.2
Lions, P.-L.3
-
7
-
-
33646378906
-
An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge-Amp̀ere equation in two dimensions
-
E.J. Dean and R. Glowinski, An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge-Amp̀ere equation in two dimensions. Electron. Trans. Numer. Anal. 22 (2006) 71-96.
-
(2006)
Electron. Trans. Numer. Anal.
, vol.22
, pp. 71-96
-
-
Dean, E.J.1
Glowinski, R.2
-
8
-
-
30944438089
-
Numerical methods for fully nonlinear elliptic equations of the Monge-Amp̀ere type
-
E.J. Dean and R. Glowinski, Numerical methods for fully nonlinear elliptic equations of the Monge-Amp̀ere type. Comput. Methods Appl. Mech. Engrg. 195 (2006) 1344-1386.
-
(2006)
Comput. Methods Appl. Mech. Engrg.
, vol.195
, pp. 1344-1386
-
-
Dean, E.J.1
Glowinski, R.2
-
9
-
-
84962796427
-
On the numerical solution of the elliptic Monge-Amp̀ere equation in dimension two: A leastsquares approach
-
Springer, Dordrecht, The Netherlands
-
E.J. Dean and R. Glowinski, On the numerical solution of the elliptic Monge-Amp̀ere equation in dimension two: a leastsquares approach, in Partial differential equations, Comput. Methods Appl. Sci. 16, Springer, Dordrecht, The Netherlands (2008) 43-63.
-
(2008)
Partial Differential Equations, Comput. Methods Appl. Sci.
, vol.16
, pp. 43-63
-
-
Dean, E.J.1
Glowinski, R.2
-
10
-
-
77956571680
-
Operator-splitting methods and applications to the direct numerical simulation of particulate flow and to the solution of the elliptic Monge-Amp̀ere equation
-
Chapman & Hall/CRC, Boca Raton, USA
-
E.J. Dean, R. Glowinski and T.-W. Pan, Operator-splitting methods and applications to the direct numerical simulation of particulate flow and to the solution of the elliptic Monge-Amp̀ere equation, in Control and boundary analysis, Lect. Notes Pure Appl. Math. 240, Chapman & Hall/CRC, Boca Raton, USA (2005) 1-27.
-
(2005)
Control and Boundary Analysis, Lect. Notes Pure Appl. Math.
, vol.240
, pp. 1-27
-
-
Dean, E.J.1
Glowinski, R.2
Pan, T.-W.3
-
11
-
-
0003073688
-
Partial differential equations and Monge-Kantorovich mass transfer
-
Cambridge, MA, Int Press, Boston, USA
-
L.C. Evans, Partial differential equations and Monge-Kantorovich mass transfer, in Current developments in mathematics, 1997 (Cambridge, MA), Int. Press, Boston, USA (1999) 65-126.
-
(1999)
Current Developments in Mathematics 1997
, pp. 65-126
-
-
Evans, L.C.1
-
13
-
-
77952098338
-
Mixed finite element methods for the fully nonlinear Monge-Amp̀ere equation based on the vanishing moment method
-
X. Feng and M. Neilan, Mixed finite element methods for the fully nonlinear Monge-Amp̀ere equation based on the vanishing moment method. SIAM J. Numer. Anal. 47 (2009) 1226-1250.
-
(2009)
SIAM J. Numer. Anal.
, vol.47
, pp. 1226-1250
-
-
Feng, X.1
Neilan, M.2
-
14
-
-
59349099761
-
Vanishing moment method and moment solutions for fully nonlinear second order partial differential equations
-
X. Feng and M. Neilan, Vanishing moment method and moment solutions for fully nonlinear second order partial differential equations. J. Sci. Comput. 38 (2009) 74-98.
-
(2009)
J. Sci. Comput.
, vol.38
, pp. 74-98
-
-
Feng, X.1
Neilan, M.2
-
16
-
-
43949102023
-
Applications of operator-splitting methods to the direct numerical simulation of particulate and free-surface flows and to the numerical solution of the two-dimensional elliptic Monge- Amp̀ere equation
-
R. Glowinski, E.J. Dean, G. Guidoboni, L.H. Júarez and T.-W. Pan, Applications of operator-splitting methods to the direct numerical simulation of particulate and free-surface flows and to the numerical solution of the two-dimensional elliptic Monge- Amp̀ere equation. Japan J. Indust. Appl. Math. 25 (2008) 1-63.
-
(2008)
Japan J. Indust. Appl. Math.
, vol.25
, pp. 1-63
-
-
Glowinski, R.1
Dean, E.J.2
Guidoboni, G.3
Júarez, L.H.4
Pan, T.-W.5
-
18
-
-
13844310722
-
Numerical solution of the Monge-Amp̀ere equation by a Newton's algorithm
-
G. Loeper and F. Rapetti, Numerical solution of the Monge-Amp̀ere equation by a Newton's algorithm. C. R. Math. Acad. Sci. Paris 340 (2005) 319-324.
-
(2005)
C. R. Math. Acad. Sci. Paris
, vol.340
, pp. 319-324
-
-
Loeper, G.1
Rapetti, F.2
-
19
-
-
34247269678
-
Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton-Jacobi equations and free boundary problems
-
A.M. Oberman, Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton-Jacobi equations and free boundary problems. SIAM J. Numer. Anal. 44 (2006) 879-895.
-
(2006)
SIAM J. Numer. Anal.
, vol.44
, pp. 879-895
-
-
Oberman, A.M.1
-
20
-
-
44349108892
-
Computing the convex envelope using a nonlinear partial differential equation
-
A.M. Oberman, Computing the convex envelope using a nonlinear partial differential equation. Math. Models Methods Appl. Sci. 18 (2008) 759-780.
-
(2008)
Math. Models Methods Appl. Sci.
, vol.18
, pp. 759-780
-
-
Oberman, A.M.1
-
21
-
-
47249122195
-
Wide stencil finite difference schemes for the elliptic Monge-Amp̀ere equation and functions of the eigenvalues of the Hessian
-
A.M. Oberman, Wide stencil finite difference schemes for the elliptic Monge-Amp̀ere equation and functions of the eigenvalues of the Hessian. Discrete Contin. Dyn. Syst. Ser. B 10 (2008) 221-238.
-
(2008)
Discrete Contin. Dyn. Syst. Ser. B
, vol.10
, pp. 221-238
-
-
Oberman, A.M.1
-
22
-
-
34249964909
-
On the numerical solution of the equation (∂2z/∂x2)(∂2z/ ∂y2) - (∂2z/∂x∂y)2 = f and its discretizations, i
-
V.I. Oliker and L.D. Prussner, On the numerical solution of the equation (∂2z/∂x2)(∂2z/∂y2) - (∂2z/∂x∂y)2 = f and its discretizations, I. Numer. Math. 54 (1988) 271-293.
-
(1988)
Numer. Math.
, vol.54
, pp. 271-293
-
-
Oliker, V.I.1
Prussner, L.D.2
|