메뉴 건너뛰기




Volumn 44, Issue 4, 2010, Pages 737-758

Two numerical methods for the elliptic Monge-Ampère equation

Author keywords

Finite difference schemes; Monge Amp re equation; Partial differential equations; Viscosity solutions

Indexed keywords


EID: 77956599916     PISSN: 28227840     EISSN: 28047214     Source Type: Journal    
DOI: 10.1051/m2an/2010017     Document Type: Article
Times cited : (107)

References (22)
  • 2
    • 84974753170 scopus 로고
    • Convergence of approximation schemes for fully nonlinear second order equations
    • G. Barles and P.E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Anal. 4 (1991) 271-283.
    • (1991) Asymptotic Anal. , vol.4 , pp. 271-283
    • Barles, G.1    Souganidis, P.E.2
  • 3
    • 55349084784 scopus 로고    scopus 로고
    • On finite element methods for fully nonlinear elliptic equations of second order
    • K. Böhmer, On finite element methods for fully nonlinear elliptic equations of second order. SIAM J. Numer. Anal. 46 (2008) 1212-1249.
    • (2008) SIAM J. Numer. Anal. , vol.46 , pp. 1212-1249
    • Böhmer, K.1
  • 5
    • 84990580987 scopus 로고
    • The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Amp̀ere equation
    • L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Amp̀ere equation. Comm. Pure Appl. Math. 37 (1984) 369-402.
    • (1984) Comm. Pure Appl. Math. , vol.37 , pp. 369-402
    • Caffarelli, L.1    Nirenberg, L.2    Spruck, J.3
  • 6
    • 84967708673 scopus 로고
    • User's guide to viscosity solutions of second order partial differential equations
    • M.G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 (1992) 1-67.
    • (1992) Bull. Amer. Math. Soc. (N.S.) , vol.27 , pp. 1-67
    • Crandall, M.G.1    Ishii, H.2    Lions, P.-L.3
  • 7
    • 33646378906 scopus 로고    scopus 로고
    • An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge-Amp̀ere equation in two dimensions
    • E.J. Dean and R. Glowinski, An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge-Amp̀ere equation in two dimensions. Electron. Trans. Numer. Anal. 22 (2006) 71-96.
    • (2006) Electron. Trans. Numer. Anal. , vol.22 , pp. 71-96
    • Dean, E.J.1    Glowinski, R.2
  • 8
    • 30944438089 scopus 로고    scopus 로고
    • Numerical methods for fully nonlinear elliptic equations of the Monge-Amp̀ere type
    • E.J. Dean and R. Glowinski, Numerical methods for fully nonlinear elliptic equations of the Monge-Amp̀ere type. Comput. Methods Appl. Mech. Engrg. 195 (2006) 1344-1386.
    • (2006) Comput. Methods Appl. Mech. Engrg. , vol.195 , pp. 1344-1386
    • Dean, E.J.1    Glowinski, R.2
  • 9
    • 84962796427 scopus 로고    scopus 로고
    • On the numerical solution of the elliptic Monge-Amp̀ere equation in dimension two: A leastsquares approach
    • Springer, Dordrecht, The Netherlands
    • E.J. Dean and R. Glowinski, On the numerical solution of the elliptic Monge-Amp̀ere equation in dimension two: a leastsquares approach, in Partial differential equations, Comput. Methods Appl. Sci. 16, Springer, Dordrecht, The Netherlands (2008) 43-63.
    • (2008) Partial Differential Equations, Comput. Methods Appl. Sci. , vol.16 , pp. 43-63
    • Dean, E.J.1    Glowinski, R.2
  • 10
    • 77956571680 scopus 로고    scopus 로고
    • Operator-splitting methods and applications to the direct numerical simulation of particulate flow and to the solution of the elliptic Monge-Amp̀ere equation
    • Chapman & Hall/CRC, Boca Raton, USA
    • E.J. Dean, R. Glowinski and T.-W. Pan, Operator-splitting methods and applications to the direct numerical simulation of particulate flow and to the solution of the elliptic Monge-Amp̀ere equation, in Control and boundary analysis, Lect. Notes Pure Appl. Math. 240, Chapman & Hall/CRC, Boca Raton, USA (2005) 1-27.
    • (2005) Control and Boundary Analysis, Lect. Notes Pure Appl. Math. , vol.240 , pp. 1-27
    • Dean, E.J.1    Glowinski, R.2    Pan, T.-W.3
  • 11
    • 0003073688 scopus 로고    scopus 로고
    • Partial differential equations and Monge-Kantorovich mass transfer
    • Cambridge, MA, Int Press, Boston, USA
    • L.C. Evans, Partial differential equations and Monge-Kantorovich mass transfer, in Current developments in mathematics, 1997 (Cambridge, MA), Int. Press, Boston, USA (1999) 65-126.
    • (1999) Current Developments in Mathematics 1997 , pp. 65-126
    • Evans, L.C.1
  • 13
    • 77952098338 scopus 로고    scopus 로고
    • Mixed finite element methods for the fully nonlinear Monge-Amp̀ere equation based on the vanishing moment method
    • X. Feng and M. Neilan, Mixed finite element methods for the fully nonlinear Monge-Amp̀ere equation based on the vanishing moment method. SIAM J. Numer. Anal. 47 (2009) 1226-1250.
    • (2009) SIAM J. Numer. Anal. , vol.47 , pp. 1226-1250
    • Feng, X.1    Neilan, M.2
  • 14
    • 59349099761 scopus 로고    scopus 로고
    • Vanishing moment method and moment solutions for fully nonlinear second order partial differential equations
    • X. Feng and M. Neilan, Vanishing moment method and moment solutions for fully nonlinear second order partial differential equations. J. Sci. Comput. 38 (2009) 74-98.
    • (2009) J. Sci. Comput. , vol.38 , pp. 74-98
    • Feng, X.1    Neilan, M.2
  • 16
    • 43949102023 scopus 로고    scopus 로고
    • Applications of operator-splitting methods to the direct numerical simulation of particulate and free-surface flows and to the numerical solution of the two-dimensional elliptic Monge- Amp̀ere equation
    • R. Glowinski, E.J. Dean, G. Guidoboni, L.H. Júarez and T.-W. Pan, Applications of operator-splitting methods to the direct numerical simulation of particulate and free-surface flows and to the numerical solution of the two-dimensional elliptic Monge- Amp̀ere equation. Japan J. Indust. Appl. Math. 25 (2008) 1-63.
    • (2008) Japan J. Indust. Appl. Math. , vol.25 , pp. 1-63
    • Glowinski, R.1    Dean, E.J.2    Guidoboni, G.3    Júarez, L.H.4    Pan, T.-W.5
  • 18
    • 13844310722 scopus 로고    scopus 로고
    • Numerical solution of the Monge-Amp̀ere equation by a Newton's algorithm
    • G. Loeper and F. Rapetti, Numerical solution of the Monge-Amp̀ere equation by a Newton's algorithm. C. R. Math. Acad. Sci. Paris 340 (2005) 319-324.
    • (2005) C. R. Math. Acad. Sci. Paris , vol.340 , pp. 319-324
    • Loeper, G.1    Rapetti, F.2
  • 19
    • 34247269678 scopus 로고    scopus 로고
    • Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton-Jacobi equations and free boundary problems
    • A.M. Oberman, Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton-Jacobi equations and free boundary problems. SIAM J. Numer. Anal. 44 (2006) 879-895.
    • (2006) SIAM J. Numer. Anal. , vol.44 , pp. 879-895
    • Oberman, A.M.1
  • 20
    • 44349108892 scopus 로고    scopus 로고
    • Computing the convex envelope using a nonlinear partial differential equation
    • A.M. Oberman, Computing the convex envelope using a nonlinear partial differential equation. Math. Models Methods Appl. Sci. 18 (2008) 759-780.
    • (2008) Math. Models Methods Appl. Sci. , vol.18 , pp. 759-780
    • Oberman, A.M.1
  • 21
    • 47249122195 scopus 로고    scopus 로고
    • Wide stencil finite difference schemes for the elliptic Monge-Amp̀ere equation and functions of the eigenvalues of the Hessian
    • A.M. Oberman, Wide stencil finite difference schemes for the elliptic Monge-Amp̀ere equation and functions of the eigenvalues of the Hessian. Discrete Contin. Dyn. Syst. Ser. B 10 (2008) 221-238.
    • (2008) Discrete Contin. Dyn. Syst. Ser. B , vol.10 , pp. 221-238
    • Oberman, A.M.1
  • 22
    • 34249964909 scopus 로고
    • On the numerical solution of the equation (∂2z/∂x2)(∂2z/ ∂y2) - (∂2z/∂x∂y)2 = f and its discretizations, i
    • V.I. Oliker and L.D. Prussner, On the numerical solution of the equation (∂2z/∂x2)(∂2z/∂y2) - (∂2z/∂x∂y)2 = f and its discretizations, I. Numer. Math. 54 (1988) 271-293.
    • (1988) Numer. Math. , vol.54 , pp. 271-293
    • Oliker, V.I.1    Prussner, L.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.