-
2
-
-
19744365631
-
-
Duncan, W. R.; Stier, W. M.; Prezhdo, O. V. J. Am. Chem. Soc. 2005, 127, 7941
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 7941
-
-
Duncan, W.R.1
Stier, W.M.2
Prezhdo, O.V.3
-
5
-
-
77956577678
-
-
Duncan, W. R.; Craig, C. F.; Prezhdo, O. V. J. Am. Chem. Soc. 2007, 12, 9-8528
-
(2007)
J. Am. Chem. Soc.
, vol.12
, pp. 9-8528
-
-
Duncan, W.R.1
Craig, C.F.2
Prezhdo, O.V.3
-
7
-
-
63049120117
-
-
Kaniyankandy, S.; Verma, S.; Mondal, J. A.; Palit, D. K.; Ghosh, H. N. J. Phys. Chem. C 2009, 113, 3593
-
(2009)
J. Phys. Chem. C
, vol.113
, pp. 3593
-
-
Kaniyankandy, S.1
Verma, S.2
Mondal, J.A.3
Palit, D.K.4
Ghosh, H.N.5
-
8
-
-
0037183070
-
-
Huber, R.; Moser, J. E.; Grâtzel, M.; Wachtveitl, J. J. Phys. Chem. B 2002, 106, 6494
-
(2002)
J. Phys. Chem. B
, vol.106
, pp. 6494
-
-
Huber, R.1
Moser, J.E.2
Grâtzel, M.3
Wachtveitl, J.4
-
9
-
-
4143108803
-
-
Huber, R.; Spôrlein, S.; Moser, J. E.; Grâtzel, M.; Wachtveitl, J. J. Phys. Chem. B 2000, 104, 8995
-
(2000)
J. Phys. Chem. B
, vol.104
, pp. 8995
-
-
Huber, R.1
Spôrlein, S.2
Moser, J.E.3
Grâtzel, M.4
Wachtveitl, J.5
-
11
-
-
77956972092
-
Recent Developments and Applications of Modern Density Functional Theory
-
Ed.; Elsevier: Amsterdam
-
Casida, M. E. Recent Developments and Applications of Modern Density Functional Theory. In Theoretical and Computational Chemistry; Seminario, M., Ed.; Elsevier: Amsterdam, 1996; Vol 4, p 391.
-
(1996)
Theoretical and Computational Chemistry
, vol.4
, pp. 391
-
-
Casida, M.E.1
Seminario, M.2
-
12
-
-
33645661167
-
-
Kondov, I.; Wang, H.; Thoss, M. Int. J. Quantum Chem. 2006, 106, 1291
-
(2006)
Int. J. Quantum Chem.
, vol.106
, pp. 1291
-
-
Kondov, I.1
Wang, H.2
Thoss, M.3
-
13
-
-
55649102335
-
-
Guo, Z.; Liang, W. Z.; Zhao, Y.; Chen, G. H. J. Phys. Chem. C 2008, 112, 16655
-
(2008)
J. Phys. Chem. C
, vol.112
, pp. 16655
-
-
Guo, Z.1
Liang, W.Z.2
Zhao, Y.3
Chen, G.H.4
-
14
-
-
0032533083
-
-
Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1998, 109, 8218
-
(1998)
J. Chem. Phys.
, vol.109
, pp. 8218
-
-
Stratmann, R.E.1
Scuseria, G.E.2
Frisch, M.J.3
-
16
-
-
0037116093
-
-
Tsolakidis, A.; Sánchez-Portal, D.; Martin, R. M. Phys. Rev. B 2002, 66, 235416
-
(2002)
Phys. Rev. B
, vol.66
, pp. 235416
-
-
Tsolakidis, A.1
Sánchez-Portal, D.2
Martin, R.M.3
-
19
-
-
24944483137
-
-
Hamad, S.; Catlow, C. R. A.; Woodley, S. M.; Lago, S.; Mejías, J. A. J. Phys. Chem. B 2005, 109, 15741
-
(2005)
J. Phys. Chem. B
, vol.109
, pp. 15741
-
-
Hamad, S.1
Catlow, C.R.A.2
Woodley, S.M.3
Lago, S.4
Mejías, J.A.5
-
20
-
-
33750905066
-
-
Lundquist, M. J.; Nilsing, M.; Persson, P.; Lunell, S. Int. J. Quantum Chem. 2006, 106, 3214
-
(2006)
Int. J. Quantum Chem.
, vol.106
, pp. 3214
-
-
Lundquist, M.J.1
Nilsing, M.2
Persson, P.3
Lunell, S.4
-
21
-
-
0038626673
-
-
Gaussian, Inc.: Wallingford, CT
-
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Rob, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03; Gaussian, Inc.: Wallingford, CT, 2003.
-
(2003)
Gaussian 03
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Scuseria, G.E.4
Rob, M.A.5
Cheeseman, J.R.6
Montgomery Jr., J.A.7
Vreven, T.8
Kudin, K.N.9
Burant, J.C.10
Millam, J.M.11
Iyengar, S.S.12
Tomasi, J.13
Barone, V.14
Mennucci, B.15
Cossi, M.16
Scalmani, G.17
Rega, N.18
Petersson, G.A.19
Nakatsuji, H.20
Hada, M.21
Ehara, M.22
Toyota, K.23
Fukuda, R.24
Hasegawa, J.25
Ishida, M.26
Nakajima, T.27
Honda, Y.28
Kitao, O.29
Nakai, H.30
Klene, M.31
Li, X.32
Knox, J.E.33
Hratchian, H.P.34
Cross, J.B.35
Bakken, V.36
Adamo, C.37
Jaramillo, J.38
Gomperts, R.39
Stratmann, R.E.40
Yazyev, O.41
Austin, A.J.42
Cammi, R.43
Pomelli, C.44
Ochterski, J.W.45
Ayala, P.Y.46
Morokuma, K.47
Voth, G.A.48
Salvador, P.49
Dannenberg, J.J.50
Zakrzewski, V.G.51
Dapprich, S.52
Daniels, A.D.53
Strain, M.C.54
Farkas, O.55
Malick, D.K.56
Rabuck, A.D.57
Raghavachari, K.58
Foresman, J.B.59
Ortiz, J.V.60
Cui, Q.61
Baboul, A.G.62
Clifford, S.63
Cioslowski, J.64
Stefanov, B.B.65
Liu, G.66
Liashenko, A.67
Piskorz, P.68
Komaromi, I.69
Martin, R.L.70
Fox, D.J.71
Keith, T.72
Al-Laham, M.A.73
Peng, C.Y.74
Nanayakkara, A.75
Challacombe, M.76
Gill, P.M.W.77
Johnson, B.78
Chen, W.79
Wong, M.W.80
Gonzalez, C.81
Pople, J.A.82
more..
-
22
-
-
0037171091
-
-
Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. J. Phys. Condens. Matter. 2002, 14, 2745
-
(2002)
Phys. Condens. Matter.
, vol.14
, pp. 2745
-
-
Soler, J.M.1
Artacho, E.2
Gale, J.D.3
García, A.4
Junquera, J.5
Ordejón, P.6
Sánchez-Portal, D.J.7
-
23
-
-
0006838610
-
-
Sánchez-Portal, D.; Ordejón, P.; Artacho, E.; Soler, J. M. Int. J. Quantum Chem. 1997, 67, 453
-
(1997)
Int. J. Quantum Chem.
, vol.67
, pp. 453
-
-
Sánchez-Portal, D.1
Ordejón, P.2
Artacho, E.3
Soler, J.M.4
-
24
-
-
77956581652
-
-
Different schemes have been proposed, however, to calculate optical spectra in the frequency domain, that rely on iterative methods to estimate the full spectrum of large systems with moderate computational workload (see ref 25). These are still not broadly used and have not been considered in our study
-
Different schemes have been proposed, however, to calculate optical spectra in the frequency domain, that rely on iterative methods to estimate the full spectrum of large systems with moderate computational workload (see ref 25). These are still not broadly used and have not been considered in our study.
-
-
-
-
25
-
-
33645089207
-
-
Walker, B. A. M.; Saitta, A. M.; Gebauer, R.; Baroni, S. Phys. Rev. Lett. 2006, 96, 113001
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 113001
-
-
Walker, B.A.M.1
Saitta, A.M.2
Gebauer, R.3
Baroni, S.4
-
28
-
-
0033197383
-
-
Artacho, E.; Sánchez-Portal, D.; Ordejón, P.; García, A.; Soler, J. M. Int. J. Quantum Chem. Status Solidi B 1999, 215, 809
-
(1999)
Int. J. Quantum Chem. Status Solidi B
, vol.215
, pp. 809
-
-
Artacho, E.1
Sánchez-Portal, D.2
Ordejón, P.3
García, A.4
Soler, J.M.5
-
29
-
-
0035894201
-
-
Junquera, J.; Paz, O.; Sanchez-Portal, D.; Artacho, E. Phys. Rev. B 2001, 64, 235111
-
(2001)
Phys. Rev. B
, vol.64
, pp. 235111
-
-
Junquera, J.1
Paz, O.2
Sanchez-Portal, D.3
Artacho, E.4
-
30
-
-
0037113457
-
-
Anglada, E.; Soler, J. M.; Junquera, J.; Artacho, E. Phys. Rev. B 2002, 66, 205101
-
(2002)
Phys. Rev. B
, vol.66
, pp. 205101
-
-
Anglada, E.1
Soler, J.M.2
Junquera, J.3
Artacho, E.4
-
31
-
-
77956576909
-
-
The Ti atom basis set consists of 15 basis functions: two radial functions to represent the 4s electrons with cutoff radii 6.10 and 5.12 au, one radial function for the 4p orbitals with radius 3.11 au, and two functions for the 3d shell with radii 5.95 and 4.75 au. Oxygen electrons were described with 13 functions: two for the 2s shell with confinement radii 4.46 and 2.51 au, two functions for the 2p orbital with radii 6.17 and 2.33 au, and one function for 3d polarization shell with radius 5.06 au. The C atom basis set consists of 13 basis functions: two for the 2s states with radii 5.52 and 3.10 au, two for the 2p orbital with radii 6.91 and 3.03 au, and one function for the 3d polarization shell with radius 5.12 au. Finally, for the H atom, five functions were used: two radial functions for the 1s shell with radii 4.95 and 1.77 au and one function for the 2p polarization shell with a 5.07 au radius
-
The Ti atom basis set consists of 15 basis functions: two radial functions to represent the 4s electrons with cutoff radii 6.10 and 5.12 au, one radial function for the 4p orbitals with radius 3.11 au, and two functions for the 3d shell with radii 5.95 and 4.75 au. Oxygen electrons were described with 13 functions: two for the 2s shell with confinement radii 4.46 and 2.51 au, two functions for the 2p orbital with radii 6.17 and 2.33 au, and one function for 3d polarization shell with radius 5.06 au. The C atom basis set consists of 13 basis functions: two for the 2s states with radii 5.52 and 3.10 au, two for the 2p orbital with radii 6.91 and 3.03 au, and one function for the 3d polarization shell with radius 5.12 au. Finally, for the H atom, five functions were used: two radial functions for the 1s shell with radii 4.95 and 1.77 au and one function for the 2p polarization shell with a 5.07 au radius.
-
-
-
-
32
-
-
77956562454
-
-
The standard TD-DFT (Gaussian 03 code) spectrum was fitted by assigning a Gaussian function to each electronic excitation frequency with an area proportional to the oscillator strength of that excitation. A single width parameter was chosen so the band broadening was similar to that in real time TD-DFT spectra
-
The standard TD-DFT (Gaussian 03 code) spectrum was fitted by assigning a Gaussian function to each electronic excitation frequency with an area proportional to the oscillator strength of that excitation. A single width parameter was chosen so the band broadening was similar to that in real time TD-DFT spectra.
-
-
-
|