-
1
-
-
5844297152
-
Theory of reproducing kernels
-
MR0051437 (14:479c)
-
N. Aronsza jn, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68, 337-404 (1950). MR0051437 (14:479c)
-
(1950)
Trans. Amer. Math. Soc.
, vol.68
, pp. 337-404
-
-
Aronsza, N.1
-
2
-
-
0003008716
-
Valuation of mortgage backed securities using Brownian bridges to reduce effective dimension
-
R. E. Caflisch, W. Morokoff, and A. Owen, Valuation of mortgage backed securities using Brownian bridges to reduce effective dimension, J. Comput. Finance 1, 27-46 (1997).
-
(1997)
J. Comput. Finance
, vol.1
, pp. 27-46
-
-
Caflisch, R.E.1
Morokoff, W.2
Owen, A.3
-
3
-
-
36248958078
-
Strong tractability of multivariate integration of arbitrary high order using digitally shifted polynomial lattice rules
-
MR2372007 (2008m:65067)
-
J. Dick and F. Pillichshammer, Strong tractability of multivariate integration of arbitrary high order using digitally shifted polynomial lattice rules, J. Complexity 23, 436-453 (2007). MR2372007 (2008m:65067)
-
(2007)
J. Complexity
, vol.23
, pp. 436-453
-
-
Dick, J.1
Pillichshammer, F.2
-
4
-
-
1242296556
-
Liberating the weights
-
MR2086942 (2005h:65008)
-
J. Dick, I. H. Sloan, X. Wang, and H. Wózniakowski, Liberating the weights, J. Complexity 20, 593-623 (2004). MR2086942 (2005h:65008)
-
(2004)
J. Complexity
, vol.20
, pp. 593-623
-
-
Dick, J.1
Sloan, I.H.2
Wang, X.3
Wózniakowski, H.4
-
5
-
-
49949112371
-
Sparse grids and related approximation schemes for higher dimensional problems
-
Santander 2005 (L. M. Pardo, A. Pinkus, E. Süli, M. J. Todd, eds.), Cambridge University Press, London, MR2277104 (2007k:65206)
-
M. Griebel, Sparse grids and related approximation schemes for higher dimensional problems, Foundations of Computational Mathematics, Santander 2005 (L. M. Pardo, A. Pinkus, E. Süli, M. J. Todd, eds.), Cambridge University Press, London, 2006, pp. 106-161. MR2277104 (2007k:65206)
-
(2006)
Foundations of Computational Mathematics
, pp. 106-161
-
-
Griebel, M.1
-
8
-
-
37849003005
-
-
(H. Niederreiter, ed.), Springer-Verlag, Berlin, MR2076938
-
F. J. Hickernell, I. H. Sloan, and G. W. Wasilkowski, The strong tractability of multivariate integration using lattice rules, Monte Carlo and Quasi-Monte Carlo Methods 2002 (H. Niederreiter, ed.), Springer-Verlag, Berlin, 2004, pp. 259-273. MR2076938
-
(2004)
The strong tractability of multivariate integration using lattice rules, Monte Carlo and Quasi-Monte Carlo Methods 2002
, pp. 259-273
-
-
Hickernell, F.J.1
Sloan, I.H.2
Wasilkowski, G.W.3
-
9
-
-
28444457322
-
Lifting the curse of dimensionality
-
MR2183869 (2006j:65061)
-
F. Y. Kuo and I. H. Sloan, Lifting the curse of dimensionality, Notices Amer. Math. Soc. 52, 1320-1329 (2005). MR2183869 (2006j:65061)
-
(2005)
Notices Amer. Math. Soc.
, vol.52
, pp. 1320-1329
-
-
Kuo, F.Y.1
Sloan, I.H.2
-
11
-
-
2942614996
-
Multicut-HDMR with an application to an ionospheric model
-
G. Li, J. Schoendorf, T.-S. Ho, and H. Rabitz, Multicut-HDMR with an application to an ionospheric model, J. Comput. Chem. 25, 1149-1156 (2004).
-
(2004)
J. Comput. Chem.
, vol.25
, pp. 1149-1156
-
-
Li, G.1
Schoendorf, J.2
Ho, T.-S.3
Rabitz, H.4
-
12
-
-
33644918017
-
Random sampling-high dimensional model representation (RS-HDMR) and orthogonality of its different order component functions
-
G. Li, J. Hu, S.-W. Wang, P. G. Georgopoulos, J. Schoendorf, and H. Rabitz, Random sampling-high dimensional model representation (RS-HDMR) and orthogonality of its different order component functions, J. Phys. Chem. A 110, 2474-2485 (2006).
-
(2006)
J. Phys. Chem. A
, vol.110
, pp. 2474-2485
-
-
Li, G.1
Hu, J.2
Wang, S.-W.3
Georgopoulos, P.G.4
Schoendorf, J.5
Rabitz, H.6
-
13
-
-
33745606696
-
Ratio control variate method for efficiently determining high-dimensional model representations
-
G. Li and H. Rabitz, Ratio control variate method for efficiently determining high-dimensional model representations, J. Comput. Chem. 27, 1112-1118 (2006).
-
(2006)
J. Comput. Chem.
, vol.27
, pp. 1112-1118
-
-
Li, G.1
Rabitz, H.2
-
14
-
-
33745668483
-
Estimating mean dimensionality of analysis of variance decompositions
-
MR2281247
-
R. Liu and A. Owen, Estimating mean dimensionality of analysis of variance decompositions, J. Amer. Statist. Assoc. 101, 712-721 (2006). MR2281247
-
(2006)
J. Amer. Statist. Assoc.
, vol.101
, pp. 712-721
-
-
Liu, R.1
Owen, A.2
-
15
-
-
0033098910
-
Efficient input-output model representation
-
H. Rabitz, O. F. Alis, J. Shorter and K. Shim, Efficient input-output model representation, Comput. Phys. Commun. 117, 11-20 (1999).
-
(1999)
Comput. Phys. Commun.
, vol.117
, pp. 11-20
-
-
Rabitz, H.1
Alis, O.F.2
Shorter, J.3
Shim, K.4
-
16
-
-
1242299745
-
Finite-order weights imply tractability of multi-variate integration
-
MR2031558 (2004j:65034)
-
I. H. Sloan, X. Wang, and H. Wózniakowski, Finite-order weights imply tractability of multi-variate integration, J. Complexity 20, 46-74 (2004). MR2031558 (2004j:65034)
-
(2004)
J. Complexity
, vol.20
, pp. 46-74
-
-
Sloan, I.H.1
Wang, X.2
Wózniakowski, H.3
-
18
-
-
0000807470
-
Sensitivity estimates for nonlinear mathematical models
-
MR1335161 (96a:65010), (in Russian), English translation in: Mathematical Modeling and Computational Experiment, 407-414
-
I. M. Sobol, Sensitivity estimates for nonlinear mathematical models, Matematicheskoe Modelirovanie, 1990, V. 2, N 1, 112-118 (in Russian), English translation in: Mathematical Modeling and Computational Experiment, 407-414 (1993). MR1335161 (96a:65010)
-
(1993)
Matematicheskoe Modelirovanie 1990
, vol.2
, Issue.1
, pp. 112-118
-
-
Sobol, I.M.1
-
19
-
-
0037301809
-
Theorems and examples on high dimensional model representation
-
I. M. Sobol, Theorems and examples on high dimensional model representation, Reliability Engrg. and System Safety 79, 187-193 (2003).
-
(2003)
Reliability Engrg. and System Safety
, vol.79
, pp. 187-193
-
-
Sobol, I.M.1
-
20
-
-
0003241881
-
Spline Models for Observational Data, SIAM-NSF Regional Conference Series
-
SIAM, Philadelphia, MR1045442 (91g:62028)
-
G. Wahba, Spline Models for Observational Data, SIAM-NSF Regional Conference Series in Appl. Math., Vol. 59, SIAM, Philadelphia, 1990. MR1045442 (91g:62028)
-
(1990)
Appl. Math.
, vol.59
-
-
Wahba, G.1
-
21
-
-
0037389675
-
Effective dimension and quasi-Monte Carlo integration
-
MR1966664 (2003m:62016)
-
X. Wang and K.-T. Fang, Effective dimension and quasi-Monte Carlo integration, J. Complexity 19, 101-124 (2003). MR1966664 (2003m:62016)
-
(2003)
J. Complexity
, vol.19
, pp. 101-124
-
-
Wang, X.1
Fang, K.-T.2
-
22
-
-
35348825712
-
Brownian bridge and principal component analysis
-
MR2371825 (2009a:62248)
-
X. Wang and I. H. Sloan, Brownian bridge and principal component analysis, IMA J. Numer. Anal. 27, 631-654 (2007). MR2371825 (2009a:62248)
-
(2007)
IMA J. Numer. Anal.
, vol.27
, pp. 631-654
-
-
Wang, X.1
Sloan, I.H.2
-
23
-
-
1842702650
-
Tractability of approximation and integration for weighted tensor product problems over unbounded domains
-
(K.-T. Fang, F. J. Hickernell, H. Niederreiter, eds.), Springer, Berlin, MR1958877 (2004b:65222)
-
G. W. Wasilkowski and H. Wózniakowski, Tractability of approximation and integration for weighted tensor product problems over unbounded domains, Monte Carlo and Quasi-Monte Carlo Methods 2000, (K.-T. Fang, F. J. Hickernell, H. Niederreiter, eds.), Springer, Berlin, 2002, pp. 497-522. MR1958877 (2004b:65222)
-
(2002)
Monte Carlo and Quasi-Monte Carlo Methods 2000
, pp. 497-522
-
-
Wasilkowski, G.W.1
Wózniakowski, H.2
-
24
-
-
11144293601
-
Finite-order weights imply tractability of linear multivariate problems
-
MR2086810 (2005d:41048)
-
G. W. Wasilkowski and H. Wózniakowski, Finite-order weights imply tractability of linear multivariate problems, J. Approx. Theory 130, 57-77 (2004). MR2086810 (2005d:41048)
-
(2004)
J. Approx. Theory
, vol.130
, pp. 57-77
-
-
Wasilkowski, G.W.1
Wózniakowski, H.2
-
25
-
-
31844456589
-
Polynomial-time Algorithms for Multivariate Linear Problems with Finite-order Weights: Worst Case Setting
-
MR2189546 (2006i:65037)
-
G. W. Wasilkowski and H. Wózniakowski, Polynomial-time Algorithms for Multivariate Linear Problems with Finite-order Weights: Worst Case Setting, Found. Comput. Math., 5, 451-491 (2005). MR2189546 (2006i:65037)
-
(2005)
Found. Comput. Math.
, vol.5
, pp. 451-491
-
-
Wasilkowski, G.W.1
Wózniakowski, H.2
|