메뉴 건너뛰기




Volumn 1, Issue , 2010, Pages 297-306

CORD: A hybrid approach for efficient clustering of ordinal data using fuzzy logic and Self-organizing Maps

Author keywords

Clustering; Optimization; Ordinal data; User profile analysis; Web mining

Indexed keywords

CATEGORICAL DATA; CLUSTERING; CLUSTERING APPROACH; FUZZY CENTROID; HYBRID APPROACH; HYBRID CLUSTERING; HYBRID SOLUTION; INITIAL POSITION; ITERATIVE COMPUTATION; K-MODES ALGORITHM; LARGE AMOUNTS OF DATA; LARGE DATASETS; MAIN MEMORY; ORDINAL DATA; REFERENCE IMPLEMENTATION; SETS OF ORDINALS; USER PROFILE; VERY LARGE DATABASE; WEB MINING; WEB USER BEHAVIORS;

EID: 77956362451     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (3)

References (19)
  • 3
    • 0036959356 scopus 로고    scopus 로고
    • Hybrid recommender systems: Survey and experiments
    • Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction, 12(4):331-370.
    • (2002) User Modeling and User-Adapted Interaction , vol.12 , Issue.4 , pp. 331-370
    • Burke, R.1
  • 4
    • 77956385913 scopus 로고    scopus 로고
    • An extension of self-organizing maps to categorical data
    • Portugal
    • Chen, N. and Marques, N. C. (2005). An extension of self-organizing maps to categorical data. In EPIA, Portugal.
    • (2005) EPIA
    • Chen, N.1    Marques, N.C.2
  • 8
    • 26944482711 scopus 로고    scopus 로고
    • A genetic k-modes algorithm for clustering categorical data
    • Gan, G., Yang, Z., and Wu, J. (2005). A genetic k-modes algorithm for clustering categorical data. In ADMA, pages 195-202.
    • (2005) ADMA , pp. 195-202
    • Gan, G.1    Yang, Z.2    Wu, J.3
  • 10
    • 84912150847 scopus 로고    scopus 로고
    • Measuring the structural similarity of semistructured documents using entropy
    • rd Int. Conf. on VLDBs, pages 1022-1032.
    • (2007) rd Int. Conf. on VLDBs , pp. 1022-1032
    • Helmer, S.1
  • 11
    • 26944454959 scopus 로고    scopus 로고
    • A fast clustering algorithm to cluster very large categorical data sets in data mining
    • Huang, Z. (1997). A fast clustering algorithm to cluster very large categorical data sets in data mining. In In Research Issues on Data Mining and Knowledge Discovery, pages 1-8.
    • (1997) Research Issues on Data Mining and Knowledge Discovery , pp. 1-8
    • Huang, Z.1
  • 12
    • 23844536246 scopus 로고    scopus 로고
    • Fuzzy clustering of categorical data using fuzzy centroids
    • Kim, D.-W., Lee, K. H., and Lee, D. (2004). Fuzzy clustering of categorical data using fuzzy centroids. Pattern Recogn. Lett., 25(11): 1263-1271.
    • (2004) Pattern Recogn. Lett. , vol.25 , Issue.11 , pp. 1263-1271
    • Kim, D.-W.1    Lee, K.H.2    Lee, D.3
  • 14
    • 0003136237 scopus 로고
    • Efficient and effective clustering methods for spatial data mining
    • San Francisco, CA, USA. Morgan Kaufmann Pub. Inc
    • th Int. Conf. on VLDBs, pages 144-155, San Francisco, CA, USA. Morgan Kaufmann Pub. Inc.
    • (1994) th Int. Conf. on VLDBs , pp. 144-155
    • Ng, R.T.1    Han, J.2
  • 16
    • 27744492296 scopus 로고    scopus 로고
    • Multivariate exploratory analysis of ordinal data in ecology: Pitfalls, problems and solutions
    • Podani, J. (2005). Multivariate exploratory analysis of ordinal data in ecology: Pitfalls, problems and solutions. Journal of Vegetation Science, 16(5):497-510.
    • (2005) Journal of Vegetation Science , vol.16 , Issue.5 , pp. 497-510
    • Podani, J.1
  • 17
    • 35548932004 scopus 로고    scopus 로고
    • Crossclus: User-guided multi-relational clustering
    • Yin, X., Han, J., and Yu, P. S. (2007). Crossclus: user-guided multi-relational clustering. Data Min. Knowl. Discov., 15(3):321-348.
    • (2007) Data Min. Knowl. Discov. , vol.15 , Issue.3 , pp. 321-348
    • Yin, X.1    Han, J.2    Yu, P.S.3
  • 18
    • 0030157145 scopus 로고    scopus 로고
    • Birch: An efficient data clustering method for vldbs
    • Montreal, Canada
    • Zhang, T., Ramakrishnan, R., and Livny, M. (1996). Birch: An efficient data clustering method for vldbs. In Proc. of the ACM SIGMOD, pages 103-114, Montreal, Canada.
    • (1996) Proc. of the ACM SIGMOD , pp. 103-114
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.