메뉴 건너뛰기




Volumn , Issue , 2010, Pages 823-831

Redefining class definitions using constraint-based clustering: An application to remote sensing of the Earth's surface

Author keywords

Class discovery; Constraint based clustering; KDD process; Mining scientific data; Remote sensing

Indexed keywords

ARTIFICIAL DATA; BEST MATCH; CLASS DISCOVERY; CLASS LABELS; CONSTRAINT-BASED; DOMAIN EXPERTS; EARTH'S SURFACE; KDD-PROCESS; L-CLASS; L-MATRIX; LAND COVER CLASSIFICATION; MODEL COMPLEXITY; PROBABILISTIC CLUSTERING; PROBABILISTIC CONSTRAINTS; SUPERVISED CLASSIFICATION; TIME COMPLEXITY;

EID: 77956223513     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1835804.1835908     Document Type: Conference Paper
Times cited : (14)

References (25)
  • 1
    • 0037600549 scopus 로고    scopus 로고
    • Automated storage and retrieval of medical images to assist diagnosis: Implementation and preliminary assessment
    • July
    • A. M. Aisen et al. Automated storage and retrieval of medical images to assist diagnosis: Implementation and preliminary assessment. Radiology, 228:265-270, July 2003.
    • (2003) Radiology , vol.228 , pp. 265-270
    • Aisen, A.M.1
  • 2
    • 0016355478 scopus 로고
    • A new look at the statistical identification model
    • H. Akaike. A new look at the statistical identification model. IEEE Trans. Auto Control, AC-19:716-723, 1974.
    • (1974) IEEE Trans. Auto Control , vol.AC-19 , pp. 716-723
    • Akaike, H.1
  • 3
    • 2542567719 scopus 로고    scopus 로고
    • Semi-supervised clustering by seeding
    • S. Basu, A. Banerjee, and R. J. Mooney. Semi-supervised clustering by seeding. In ICML, pages 27-34, 2002.
    • (2002) ICML , pp. 27-34
    • Basu, S.1    Banerjee, A.2    Mooney, R.J.3
  • 6
    • 0002433547 scopus 로고    scopus 로고
    • From data-mining to knowledge discovery: An overview
    • U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uth̃urasamy, editors AAAI/MIT Press
    • U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data-mining to knowledge discovery: An overview. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uth̃urasamy, editors, Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, 1996.
    • (1996) Advances in Knowledge Discovery and Data Mining
    • Fayyad, U.M.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 7
    • 18644370258 scopus 로고    scopus 로고
    • Global land cover mapping from MODIS: Algorithms and early results
    • M. Friedl et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sensing of Environment, 83:287-302, 2002.
    • (2002) Remote Sensing of Environment , vol.83 , pp. 287-302
    • Friedl, M.1
  • 8
    • 0024031906 scopus 로고
    • Object-oriented feature extraction method for image data compaction
    • Jun
    • H. Ghassemian and D. Landgrebe. Object-oriented feature extraction method for image data compaction. Control Systems Magazine, IEEE, 8(3):42-48, Jun 1988.
    • (1988) Control Systems Magazine, IEEE , vol.8 , Issue.3 , pp. 42-48
    • Ghassemian, H.1    Landgrebe, D.2
  • 12
    • 58149202361 scopus 로고    scopus 로고
    • Semi-supervised graph clustering: A kernel approach
    • B. Kulis, S. Basu, I. S. Dhillon, and R. J. Mooney. Semi-supervised graph clustering: a kernel approach. Machine Learning, 74(1):1-22, 2009.
    • (2009) Machine Learning , vol.74 , Issue.1 , pp. 1-22
    • Kulis, B.1    Basu, S.2    Dhillon, I.S.3    Mooney, R.J.4
  • 14
    • 77956208964 scopus 로고    scopus 로고
    • Development of a global land cover characteristics database and IGBP DISCover from 1-km AVHRR data
    • T. Loveland et al. Development of a global land cover characteristics database and IGBP DISCover from 1-km AVHRR data. Remote Sensing of Environment, 83:287-302, 2002.
    • (2002) Remote Sensing of Environment , vol.83 , pp. 287-302
    • Loveland, T.1
  • 15
    • 34249725008 scopus 로고    scopus 로고
    • Penalized probabilistic clustering
    • Z. Lu and T. K. Leen. Penalized probabilistic clustering. Neural Comput., 19(6):1528-1567, 2007.
    • (2007) Neural Comput. , vol.19 , Issue.6 , pp. 1528-1567
    • Lu, Z.1    Leen, T.K.2
  • 18
    • 34948873565 scopus 로고    scopus 로고
    • Classification of spectrally-similar land cover using multi-spectral neural image fusion and the fuzzy artmap neural classifier
    • 31 2006-Aug. 4
    • M. Pugh and A. Waxman. Classification of spectrally-similar land cover using multi-spectral neural image fusion and the fuzzy artmap neural classifier. In IGARSS 2006, pages 1808-1811, 31 2006-Aug. 4 2006.
    • (2006) IGARSS 2006 , pp. 1808-1811
    • Pugh, M.1    Waxman, A.2
  • 19
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwartz. Estimating the dimension of a model. The Annals of Statistics, 5(2):461-464, 1978.
    • (1978) The Annals of Statistics , vol.5 , Issue.2 , pp. 461-464
    • Schwartz, G.1
  • 22
    • 0034244838 scopus 로고    scopus 로고
    • Split and merge EM algorithm for improving Gaussian mixture density estimates
    • N. Ueda, R. Nakano, Z. Ghahramani, and G. E. Hinton. Split and merge EM algorithm for improving gaussian mixture density estimates. J. VLSI Signal Process. Syst., 26(1-2):133-140, 2000.
    • (2000) J. VLSI Signal Process. Syst. , vol.26 , Issue.1-2 , pp. 133-140
    • Ueda, N.1    Nakano, R.2    Ghahramani, Z.3    Hinton, G.E.4
  • 23
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395-416, 2007.
    • (2007) Statistics and Computing , vol.17 , Issue.4 , pp. 395-416
    • Von Luxburg, U.1
  • 24
    • 0042377235 scopus 로고    scopus 로고
    • Constrained k-means clustering with background knowledge
    • K. Wagstaff, C. Cardie, and S. Schroedl. Constrained k-means clustering with background knowledge. In ICML, pages 577-584, 2001.
    • (2001) ICML , pp. 577-584
    • Wagstaff, K.1    Cardie, C.2    Schroedl, S.3
  • 25
    • 25144512945 scopus 로고    scopus 로고
    • Mixture modeling with pairwise, instance-level class constraints
    • Q. Zhao and D. J. Miller. Mixture modeling with pairwise, instance-level class constraints. Neural Computation, 17(11):2482-2507, 2005.
    • (2005) Neural Computation , vol.17 , Issue.11 , pp. 2482-2507
    • Zhao, Q.1    Miller, D.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.