메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1095-1100

Local query mining in a probabilistic prolog

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING; INDUCTIVE LOGIC PROGRAMMING (ILP); QUERY PROCESSING;

EID: 77956218695     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (8)

References (17)
  • 2
    • 38049177468 scopus 로고    scopus 로고
    • Mining frequent itemsets from uncertain data
    • C. Kit Chui, B. Kao, and E. Hung. Mining frequent itemsets from uncertain data. In PAKDD, pages 47-58, 2007.
    • (2007) PAKDD , pp. 47-58
    • Kit Chui, C.1    Kao, B.2    Hung, E.3
  • 3
    • 84938961099 scopus 로고    scopus 로고
    • Efficient query evaluation on probabilistic databases
    • N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. In VLDB, pages 864-875, 2004.
    • (2004) VLDB , pp. 864-875
    • Dalvi, N.N.1    Suciu, D.2
  • 4
    • 38049157771 scopus 로고    scopus 로고
    • Condensed representations for inductive logic programming
    • L. De Raedt and J. Ramon. Condensed representations for inductive logic programming. In KR, pages 438-446, 2004.
    • (2004) KR , pp. 438-446
    • De Raedt, L.1    Ramon, J.2
  • 5
    • 84880905111 scopus 로고    scopus 로고
    • ProbLog: A probabilistic Prolog and its application in link discovery
    • L. De Raedt, A. Kimmig, and H. Toivonen. ProbLog: A probabilistic Prolog and its application in link discovery. In IJCAI, pages 2462-2467, 2007.
    • (2007) IJCAI , pp. 2462-2467
    • De Raedt, L.1    Kimmig, A.2    Toivonen, H.3
  • 6
    • 22644450056 scopus 로고    scopus 로고
    • Discovery of frequent datalog patterns
    • L. Dehaspe and H. Toivonen. Discovery of frequent datalog patterns. Data Min. Knowl. Discov., 3(1):7-36, 1999.
    • (1999) Data Min. Knowl. Discov. , vol.3 , Issue.1 , pp. 7-36
    • Dehaspe, L.1    Toivonen, H.2
  • 7
    • 84880088183 scopus 로고    scopus 로고
    • Finding frequent substructures in chemical compounds
    • L. Dehaspe, H. Toivonen, and R. D. King. Finding frequent substructures in chemical compounds. In KDD, pages 30-36, 1998.
    • (1998) KDD , pp. 30-36
    • Dehaspe, L.1    Toivonen, H.2    King, R.D.3
  • 8
    • 22944486232 scopus 로고    scopus 로고
    • Ideal theory refinement under object identity
    • F. Esposito, N. Fanizzi, S. Ferilli, and G. Semeraro. Ideal theory refinement under object identity. In ICML, pages 263-270, 2000.
    • (2000) ICML , pp. 263-270
    • Esposito, F.1    Fanizzi, N.2    Ferilli, S.3    Semeraro, G.4
  • 9
    • 0033878293 scopus 로고    scopus 로고
    • Probabilistic Datalog: Implementing logical information retrieval for advanced applications
    • N. Fuhr. Probabilistic Datalog: Implementing logical information retrieval for advanced applications. JASIS, 51(2):95-110, 2000.
    • (2000) JASIS , vol.51 , Issue.2 , pp. 95-110
    • Fuhr, N.1
  • 10
    • 38049136929 scopus 로고    scopus 로고
    • Probabilistic explanation based learning
    • A. Kimmig, L. De Raedt, and H. Toivonen. Probabilistic explanation based learning. In ECML, pages 176-187, 2007.
    • (2007) ECML , pp. 176-187
    • Kimmig, A.1    De Raedt, L.2    Toivonen, H.3
  • 11
    • 21944442464 scopus 로고    scopus 로고
    • Levelwise search and borders of theories in knowledge discovery
    • H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge discovery. Data Min. Knowl. Discov., 1(3):241-258, 1997.
    • (1997) Data Min. Knowl. Discov. , vol.1 , Issue.3 , pp. 241-258
    • Mannila, H.1    Toivonen, H.2
  • 12
    • 0033687894 scopus 로고    scopus 로고
    • Traversing itemset lattice with statistical metric pruning
    • S. Morishita and J. Sese. Traversing itemset lattice with statistical metric pruning. In PODS, pages 226-236, 2000.
    • (2000) PODS , pp. 226-236
    • Morishita, S.1    Sese, J.2
  • 13
    • 0032092760 scopus 로고    scopus 로고
    • Exploratory mining and pruning optimizations of constrained association rules
    • R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning optimizations of constrained association rules. In SIGMOD, pages 13-24, 1998.
    • (1998) SIGMOD , pp. 13-24
    • Ng, R.T.1    Lakshmanan, L.V.S.2    Han, J.3    Pang, A.4
  • 14
    • 4444281941 scopus 로고    scopus 로고
    • Parameter learning of logic programs for symbolic-statistical modeling
    • T. Sato and Y. Kameya. Parameter learning of logic programs for symbolic-statistical modeling. J. Artif. Intell. Res. (JAIR), 15:391-454, 2001.
    • (2001) J. Artif. Intell. Res. (JAIR) , vol.15 , pp. 391-454
    • Sato, T.1    Kameya, Y.2
  • 15
    • 33746760086 scopus 로고    scopus 로고
    • Link discovery in graphs derived from biological databases
    • P. Sevon, L. Eronen, P. Hintsanen, K. Kulovesi, and H. Toivonen. Link discovery in graphs derived from biological databases. In DILS, pages 35-49, 2006.
    • (2006) DILS , pp. 35-49
    • Sevon, P.1    Eronen, L.2    Hintsanen, P.3    Kulovesi, K.4    Toivonen, H.5
  • 17
    • 57149143965 scopus 로고    scopus 로고
    • Finding frequent items in probabilistic data
    • Q. Zhang, F. Li, and K. Yi. Finding frequent items in probabilistic data. In SIGMOD, pages 819-832, 2008.
    • (2008) SIGMOD , pp. 819-832
    • Zhang, Q.1    Li, F.2    Yi, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.