메뉴 건너뛰기




Volumn , Issue , 2010, Pages 743-751

Learning to combine discriminative classifiers - Confidence based

Author keywords

Classification; Discriminative classifier; Ensemble; Logistic regression

Indexed keywords

ADABOOST; CLASSIFICATION; COMBINATION RULES; DATA SETS; DISCRIMINATIVE CLASSIFIERS; DISTRIBUTED COMPUTING ENVIRONMENT; EMPIRICAL EXPERIMENTS; ENSEMBLE; ENSEMBLE CLASSIFIERS; ENSEMBLE LEARNING; ENSEMBLE METHODS; FRAUD DETECTION; INDEPENDENT LEARNING; INDIVIDUAL CLASSIFIERS; INTENT ANALYSIS; LOGISTIC REGRESSION; MACHINE-LEARNING; MULTIPLE CLASSIFIERS; ON-MACHINES; PARAMETER LEARNING; ROBUST CLASSIFICATION; SPAM FILTERING; TEST INSTANCES; TRAINING SAMPLE; USER QUERY;

EID: 77956211450     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1835804.1835899     Document Type: Conference Paper
Times cited : (8)

References (28)
  • 7
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • J. Friedman. Greedy function approximation: a gradient boosting machine. Annals of Statistics, pages 1189-1232, 2001.
    • (2001) Annals of Statistics , pp. 1189-1232
    • Friedman, J.1
  • 10
    • 77956507425 scopus 로고    scopus 로고
    • Dirichlet process, related priors and posterior asymptotics
    • S. Ghosal. Dirichlet process, related priors and posterior asymptotics. Bayesian Nonparametrics in Practice, 2009.
    • (2009) Bayesian Nonparametrics in Practice
    • Ghosal, S.1
  • 13
    • 77956220184 scopus 로고    scopus 로고
    • Hadoop. http://hadoop.apache.org/, 2009.
    • (2009)
  • 14
    • 0031171679 scopus 로고
    • Optimal linear combinations of neural networks: An overview
    • S. Hashem, B. Schmeiser, and Y. Yih. Optimal linear combinations of neural networks: An overview. Neural Networks, 10:599-614, 1994.
    • (1994) Neural Networks , vol.10 , pp. 599-614
    • Hashem, S.1    Schmeiser, B.2    Yih, Y.3
  • 17
    • 34547966875 scopus 로고    scopus 로고
    • Efficient l1 regularized logistic regression
    • S. in Lee, H. Lee, P. Abbeel, and A. Y. Ng. Efficient l1 regularized logistic regression. In In AAAI, 2006.
    • (2006) AAAI
    • Lee, S.1    Lee, H.2    Abbeel, P.3    Ng, A.Y.4
  • 18
    • 0035788903 scopus 로고    scopus 로고
    • Solving regression problems with rule-based ensemble classifiers
    • N. Indurkhya and S. M. Weiss. Solving regression problems with rule-based ensemble classifiers. In KDD, pages 287-292, 2001.
    • (2001) KDD , pp. 287-292
    • Indurkhya, N.1    Weiss, S.M.2
  • 21
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • MIT Press
    • A. Krogh and J. Vedelsby. Neural network ensembles, cross validation, and active learning. In Advances in Neural Information Processing Systems, pages 231-238. MIT Press, 1995.
    • (1995) Advances in Neural Information Processing Systems , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 24
    • 59549087165 scopus 로고    scopus 로고
    • On discriminative vs. Generative classifiers: A comparison of logistic regression and naive bayes
    • Cambridge, MA: MIT Press
    • A. Ng and M. Jordan. On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. In in Advances in Neural Information Processing Systems 14. Cambridge, MA: MIT Press, 2002.
    • (2002) Advances in Neural Information Processing Systems 14
    • Ng, A.1    Jordan, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.