메뉴 건너뛰기




Volumn 91, Issue 2, 2011, Pages 163-175

Unsupervised segmentation of randomly switching data hidden with non-Gaussian correlated noise

Author keywords

Copulas; Correlated noise; Hidden Markov chains; Image segmentation; Iterative conditional estimation; Non Gaussian noise; Non stationary data segmentation; Stochastic EM; Texture classification; Triplet Markov chains; Unsupervised signal segmentation

Indexed keywords

GAUSSIAN DISTRIBUTION; GAUSSIAN NOISE (ELECTRONIC); MARKOV PROCESSES; STOCHASTIC SYSTEMS; TEXTURES; WHITE NOISE;

EID: 77956177375     PISSN: 01651684     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sigpro.2010.05.033     Document Type: Article
Times cited : (51)

References (55)
  • 1
    • 33746537384 scopus 로고    scopus 로고
    • Kalman filtering in triplet Markov chains
    • DOI 10.1109/TSP.2006.877651
    • B. Ait-el-Fquih, and F. Desbouvries Kalman filtering in triplet Markov chains IEEE Transactions on Signal Processing 54 8 2006 2957 2963 (Pubitemid 44136974)
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.8 , pp. 2957-2963
    • Ait-El-Fquih, B.1    Desbouvries, F.2
  • 5
    • 54449096064 scopus 로고    scopus 로고
    • Unifying framework for multimodal brain MRI segmentation based on hidden Markov chains
    • S. Bricq, C. Collet, and J.-P. Armspach Unifying framework for multimodal brain MRI segmentation based on hidden Markov chains Medical Image Analysis 12 6 2008 639 652
    • (2008) Medical Image Analysis , vol.12 , Issue.6 , pp. 639-652
    • Bricq, S.1    Collet, C.2    Armspach, J.-P.3
  • 7
    • 27744467521 scopus 로고    scopus 로고
    • Unsupervised signal restoration using hidden Markov chains with copulas
    • DOI 10.1016/j.sigpro.2005.01.018, PII S0165168405001209
    • N. Brunel, and W. Pieczynski Unsupervised signal restoration using hidden Markov chains with copulas Signal Processing 85 12 2005 2304 2315 (Pubitemid 41606024)
    • (2005) Signal Processing , vol.85 , Issue.12 , pp. 2304-2315
    • Brunel, N.1    Pieczynski, W.2
  • 8
    • 76949087025 scopus 로고    scopus 로고
    • Modeling and unsupervised classification of multivariate hidden Markov chains with copulas
    • N. Brunel, J. Lapuyade-Lahorgue, and W. Pieczynski Modeling and unsupervised classification of multivariate hidden Markov chains with copulas IEEE Transactions on Automatic Control 55 2 2010 338 349
    • (2010) IEEE Transactions on Automatic Control , vol.55 , Issue.2 , pp. 338-349
    • Brunel, N.1    Lapuyade-Lahorgue, J.2    Pieczynski, W.3
  • 10
    • 4544291885 scopus 로고    scopus 로고
    • Unsupervised image segmentation based on a new fuzzy HMC model
    • Montreal, Canada, May 17-21
    • C. Carincotte, S. Derrode, G. Sicot, J.-M. Boucher, Unsupervised image segmentation based on a new fuzzy HMC model, ICASSP'04, Montreal, Canada, May 1721, 2004.
    • (2004) ICASSP'04
    • Carincotte, C.1    Derrode, S.2    Sicot, G.3    Boucher, J.-M.4
  • 13
    • 51449086396 scopus 로고    scopus 로고
    • Temporal modelling of motion textures with mixed-states Markov chains
    • March 30-April 04, Las Vegas, USA
    • T. Crivelli, B. Cernuschi-Frias, P. Bouthemy, J. F. Yao, Temporal modelling of motion textures with mixed-states Markov chains, ICASSP 2008, March 30April 04, Las Vegas, USA, 2008, pp. 881884.
    • (2008) ICASSP 2008 , pp. 881-884
    • Crivelli, T.1    Cernuschi-Frias, B.2    Bouthemy, P.3    Yao, J.F.4
  • 14
    • 0037934612 scopus 로고    scopus 로고
    • Copulas: A new insight into positive time-frequency distributions
    • M. Davy, and A. Doucet Copulas: a new insight into positive time-frequency distributions IEEE Signal Processing Letters 10 7 2003 215 218
    • (2003) IEEE Signal Processing Letters , vol.10 , Issue.7 , pp. 215-218
    • Davy, M.1    Doucet, A.2
  • 17
    • 0031257211 scopus 로고    scopus 로고
    • An equivalence of the em and ICE algorithm for exponential family
    • J.-P. Delmas An equivalence of the EM and ICE algorithm for exponential family IEEE Transactions on Signal Processing 45 10 1997 2613 2615
    • (1997) IEEE Transactions on Signal Processing , vol.45 , Issue.10 , pp. 2613-2615
    • Delmas, J.-P.1
  • 18
    • 33751069760 scopus 로고    scopus 로고
    • Unsupervised multiscale oil slick segmentation from SAR images using a vector HMC model
    • S. Derrode, and G. Mercier Unsupervised multiscale oil slick segmentation from SAR images using a vector HMC model Pattern Recognition 40 3 2007 1135 1147
    • (2007) Pattern Recognition , vol.40 , Issue.3 , pp. 1135-1147
    • Derrode, S.1    Mercier, G.2
  • 19
    • 4344625908 scopus 로고    scopus 로고
    • Signal and image segmentation using pairwise Markov chains
    • S. Derrode, and W. Pieczynski Signal and image segmentation using pairwise Markov chains IEEE Transactions on Signal Processing 52 9 2004 2477 2489
    • (2004) IEEE Transactions on Signal Processing , vol.52 , Issue.9 , pp. 2477-2489
    • Derrode, S.1    Pieczynski, W.2
  • 23
    • 0031147239 scopus 로고    scopus 로고
    • Estimation of generalized multisensor hidden markov chains and unsupervised image segmentation
    • N. Giordana, and W. Pieczynski Estimation of generalized multisensor hidden Markov chains and unsupervised image segmentation IEEE Transactions on Pattern Analysis and Machine 19 5 1997 465 475 (Pubitemid 127762238)
    • (1997) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.19 , Issue.5 , pp. 465-475
    • Giordana, N.1    Pieczynski, W.2
  • 26
    • 0019598027 scopus 로고
    • On some criteria for estimating the order of a Markov chain
    • R.W. Katz On some criteria for estimating the order of a Markov chain Technometrics 23 1981 243 249
    • (1981) Technometrics , vol.23 , pp. 243-249
    • Katz, R.W.1
  • 30
    • 23644453018 scopus 로고    scopus 로고
    • Unsupervised restoration of hidden nonstationary Markov chains using evidential priors
    • DOI 10.1109/TSP.2005.851131
    • P. Lanchantin, and W. Pieczynski Unsupervised restoration of hidden non stationary Markov chain using evidential priors IEEE Transactions on Signal Processing 53 8 2005 3091 3098 (Pubitemid 41372818)
    • (2005) IEEE Transactions on Signal Processing , vol.53 , Issue.8 , pp. 3091-3098
    • Lanchantin, P.1    Pieczynski, W.2
  • 31
    • 38949152711 scopus 로고    scopus 로고
    • Unsupervised segmentation of triplet Markov chains with long-memory noise
    • P. Lanchantin, J. Lapuyade-Lahorgue, and W. Pieczynski Unsupervised segmentation of triplet Markov chains with long-memory noise Signal Processing 88 5 2008 1134 1151
    • (2008) Signal Processing , vol.88 , Issue.5 , pp. 1134-1151
    • Lanchantin, P.1    Lapuyade-Lahorgue, J.2    Pieczynski, W.3
  • 33
    • 54949143551 scopus 로고    scopus 로고
    • Fuzzy pairwise Markov chain to segment correlated noisy data
    • S. Le Cam, F. Salzenstein, and C. Collet Fuzzy pairwise Markov chain to segment correlated noisy data Signal Processing 88 10 2008 2526 2541
    • (2008) Signal Processing , vol.88 , Issue.10 , pp. 2526-2541
    • Le Cam, S.1    Salzenstein, F.2    Collet, C.3
  • 36
    • 0242456926 scopus 로고    scopus 로고
    • Hyperspectral image segmentation with Markov chain model
    • G. Mercier, S. Derrode, and M. Lennon Hyperspectral image segmentation with Markov chain model In: Proceedings of IGARSS 2003 6 2003 3766 3768
    • (2003) Proceedings of IGARSS 2003 , vol.6 , pp. 3766-3768
    • Mercier, G.1    Derrode, S.2    Lennon, M.3
  • 37
    • 33646885204 scopus 로고    scopus 로고
    • SAR amplitude probability density function estimation based on a generalized Gaussian model
    • DOI 10.1109/TIP.2006.871124
    • G. Moser, J. Zerubia, and S.B. Serpico SAR amplitude probability density function estimation based on a generalized Gaussian model IEEE Transactions on Image Processing 15 6 2006 1429 1442 (Pubitemid 43778922)
    • (2006) IEEE Transactions on Image Processing , vol.15 , Issue.6 , pp. 1429-1442
    • Moser, G.1    Zerubia, J.2    Serpico, S.B.3
  • 38
    • 37249043121 scopus 로고    scopus 로고
    • Intensity models for non-Rayleigh speckle distributions
    • S. Nadarajah, and S. Kotz Intensity models for non-Rayleigh speckle distributions International Journal of Remote Sensing 29 2 2008 529 541
    • (2008) International Journal of Remote Sensing , vol.29 , Issue.2 , pp. 529-541
    • Nadarajah, S.1    Kotz, S.2
  • 42
    • 30344478290 scopus 로고    scopus 로고
    • Multisensor triplet Markov fields and theory of evidence
    • W. Pieczynski, and D. Benboudjema Multisensor triplet Markov fields and theory of evidence Image and Vision Computing 24 1 2006 61 69
    • (2006) Image and Vision Computing , vol.24 , Issue.1 , pp. 61-69
    • Pieczynski, W.1    Benboudjema, D.2
  • 46
    • 0000131927 scopus 로고
    • Statistical image segmentation
    • W. Pieczynski Statistical image segmentation Machine Graphics and Vision 1 12 1992 261 268
    • (1992) Machine Graphics and Vision , vol.1 , Issue.12 , pp. 261-268
    • Pieczynski, W.1
  • 47
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • L.R. Rabiner A tutorial on hidden Markov models and selected applications in speech recognition Proceedings of the IEEE 77 2 1989 257 286
    • (1989) Proceedings of the IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.R.1
  • 48
    • 0034351117 scopus 로고    scopus 로고
    • Brain tissue classification of magnetic resonance images using partial volume modeling
    • S. Ruan, C. Jaggi, J. Xue, J. Fadili, and D. Bloyet Brain tissue classification of magnetic resonance images using partial volume modeling IEEE Transactions on Medical Imaging 19 12 2000 1179 1187
    • (2000) IEEE Transactions on Medical Imaging , vol.19 , Issue.12 , pp. 1179-1187
    • Ruan, S.1    Jaggi, C.2    Xue, J.3    Fadili, J.4    Bloyet, D.5
  • 50
    • 0031189036 scopus 로고    scopus 로고
    • Parameter Estimation in Hidden Fuzzy Markov Random Fields and Image Segmentation
    • F. Salzenstein, and W. Pieczynski Parameter estimation in hidden fuzzy Markov random fields and image segmentation Graphical Models and Image Processing 59 4 1997 205 220 (Pubitemid 127435619)
    • (1997) Graphical Models and Image Processing , vol.59 , Issue.4 , pp. 205-220
    • Salzenstein, F.1    Pieczynski, W.2
  • 51
    • 33947179842 scopus 로고    scopus 로고
    • Fuzzy Markov random fields versus chains for multispectral image segmentation
    • F. Salzenstein, and C. Collet Fuzzy Markov random fields versus chains for multispectral image segmentation IEEE Transactions on Pattern Analysis and Machine 28 11 2006 1753 1767
    • (2006) IEEE Transactions on Pattern Analysis and Machine , vol.28 , Issue.11 , pp. 1753-1767
    • Salzenstein, F.1    Collet, C.2
  • 54
    • 0029368174 scopus 로고
    • Nonstationary Markov models
    • B. Sin, and J.H. Kim Nonstationary Markov models Signal Processing 46 1 1995 31 46
    • (1995) Signal Processing , vol.46 , Issue.1 , pp. 31-46
    • Sin, B.1    Kim, J.H.2
  • 55
    • 0003106837 scopus 로고
    • Belief functions: The disjunctive rule of combination and the generalized Bayesian theorem
    • P. Smets Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem International Journal of Approximate Reasoning 9 1993 1 35
    • (1993) International Journal of Approximate Reasoning , vol.9 , pp. 1-35
    • Smets, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.