메뉴 건너뛰기




Volumn 17, Issue 8, 2010, Pages 1067-1080

Wavelet-based functional clustering for patterns of high-dimensional dynamic gene expression

Author keywords

Algorithms; statistics

Indexed keywords

ARTICLE; CLUSTER ANALYSIS; DNA MICROARRAY; GENE EXPRESSION PROFILING; METHODOLOGY; TIME;

EID: 77956083094     PISSN: 10665277     EISSN: None     Source Type: Journal    
DOI: 10.1089/cmb.2009.0270     Document Type: Article
Times cited : (14)

References (37)
  • 2
    • 0041346457 scopus 로고    scopus 로고
    • Continuous representations of time-series gene expression data
    • Bar-Joseph, Z., Gerber, G.K., Gifford, D.K., et al. 2003. Continuous representations of time-series gene expression data. J. Comput. Biol. 10, 341-356.
    • (2003) J. Comput. Biol. , vol.10 , pp. 341-356
    • Bar-Joseph, Z.1    Gerber, G.K.2    Gifford, D.K.3
  • 3
    • 14844285655 scopus 로고    scopus 로고
    • Comparison of computational methods for the identification of cell cycle-regulated genes
    • De Lichtenberg, U., Jensen, L.J., Fausboll, A., et al. 2005. Comparison of computational methods for the identification of cell cycle-regulated genes. Bioinformatics 21, 1164.
    • (2005) Bioinformatics , vol.21 , pp. 1164
    • De Lichtenberg, U.1    Jensen, L.J.2    Fausboll, A.3
  • 5
    • 0029307534 scopus 로고
    • De-noising by soft-thresholding
    • Donoho, D.L. 1995. De-noising by soft-thresholding. IEEE Trans. Inform. Theory 41, 613-627.
    • (1995) IEEE Trans. Inform. Theory , vol.41 , pp. 613-627
    • Donoho, D.L.1
  • 6
    • 0041958932 scopus 로고
    • Ideal spatial adaptation by wavelet shrinkage
    • Donoho, D.L., and Johnstone, J.M. 1994. Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425.
    • (1994) Biometrika , vol.81 , pp. 425
    • Donoho, D.L.1    Johnstone, J.M.2
  • 7
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • Eisen, M.B., Spellman, P.T., Brown, P.O., et al. 1998. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863.
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 14863
    • Eisen, M.B.1    Spellman, P.T.2    Brown, P.O.3
  • 8
    • 28644452470 scopus 로고    scopus 로고
    • Clustering short time series gene expression data
    • Ernst, J., Nau, G.J., and Bar-Joseph, Z. 2005. Clustering short time series gene expression data. Bioinformatics 21, 159.
    • (2005) Bioinformatics , vol.21 , pp. 159
    • Ernst, J.1    Nau, G.J.2    Bar-Joseph, Z.3
  • 9
    • 57649123263 scopus 로고    scopus 로고
    • Improved wavelet denoising via empirical wiener filtering
    • Ghael, S.P., Sayeed, A.M., and Baraniuk, R.G. 1997. Improved wavelet denoising via empirical wiener filtering. Proc. SPIE 3169, 389-399.
    • (1997) Proc. SPIE , vol.3169 , pp. 389-399
    • Ghael, S.P.1    Sayeed, A.M.2    Baraniuk, R.G.3
  • 10
    • 0036188158 scopus 로고    scopus 로고
    • Mixture modelling of gene expression data from microarray experiments
    • Ghosh, D., and Chinnaiyan, A.M. 2002. Mixture modelling of gene expression data from microarray experiments. Bioinformatics 18, 275.
    • (2002) Bioinformatics , vol.18 , pp. 275
    • Ghosh, D.1    Chinnaiyan, A.M.2
  • 12
    • 34648840585 scopus 로고    scopus 로고
    • Cluster-based network model for time-course gene expression data
    • Inoue, L.Y.T., Neira, M., Nelson, C., et al. 2007. Cluster-based network model for time-course gene expression data. Biostatistics 8, 507-525.
    • (2007) Biostatistics , vol.8 , pp. 507-525
    • Inoue, L.Y.T.1    Neira, M.2    Nelson, C.3
  • 15
    • 0001013273 scopus 로고    scopus 로고
    • Wavelet threshold estimators for data with correlated noise
    • Johnstone, I.M., and Silverman, B.W. 1997. Wavelet threshold estimators for data with correlated noise. J. R. Statist. Soc. Ser. B 59, 319-351.
    • (1997) J. R. Statist. Soc. Ser. B , vol.59 , pp. 319-351
    • Johnstone, I.M.1    Silverman, B.W.2
  • 16
    • 58149330805 scopus 로고    scopus 로고
    • A computational approach to the functional clustering of periodic gene expression profiles
    • Kim, B.R., Zhang, L., Berg, A., et al. 2008. A computational approach to the functional clustering of periodic gene expression profiles. Genetics 180, 821-834.
    • (2008) Genetics , vol.180 , pp. 821-834
    • Kim, B.R.1    Zhang, L.2    Berg, A.3
  • 18
    • 0037339264 scopus 로고    scopus 로고
    • Clustering of time-course gene expression data using a mixed-effects model with b-splines
    • Luan, Y., and Li, H. 2003. Clustering of time-course gene expression data using a mixed-effects model with b-splines. Bioinformatics 19, 474.
    • (2003) Bioinformatics , vol.19 , pp. 474
    • Luan, Y.1    Li, H.2
  • 19
    • 33644855951 scopus 로고    scopus 로고
    • A data-driven clustering method for time course gene expression data
    • Ma, P., Castillo-Davis, C.I., Zhong, W., et al. 2006. A data-driven clustering method for time course gene expression data. Nucleic Acids Res. 34, 1261.
    • (2006) Nucleic Acids Res , vol.34 , pp. 1261
    • Ma, P.1    Castillo-Davis, C.I.2    Zhong, W.3
  • 20
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: The wavelet representation
    • Mallat, S.G., et al. 1989. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674-693.
    • (1989) IEEE Trans. Pattern Anal. Mach. Intell. , vol.11 , pp. 674-693
    • Mallat, S.G.1
  • 21
    • 0036203115 scopus 로고    scopus 로고
    • A mixture model-based approach to the clustering of microarray expression data
    • McLachlan, G.J., Bean, R.W., and Peel, D. 2002. A mixture model-based approach to the clustering of microarray expression data. Bioinformatics 18, 413.
    • (2002) Bioinformatics , vol.18 , pp. 413
    • McLachlan, G.J.1    Bean, R.W.2    Peel, D.3
  • 22
    • 33747890494 scopus 로고    scopus 로고
    • A mixture model with random-effects components for clustering correlated gene-expression profiles
    • Ng, S.K., McLachlan, G.J., Wang, K., et al. 2006. A mixture model with random-effects components for clustering correlated gene-expression profiles. Bioinformatics 22, 1745.
    • (2006) Bioinformatics , vol.22 , pp. 1745
    • Ng, S.K.1    McLachlan, G.J.2    Wang, K.3
  • 23
    • 77956316758 scopus 로고    scopus 로고
    • Functional clustering of periodic transcriptional profiles through arma( p,q)
    • (in press)
    • Ning, L., McMurry, T., Berg, A., et al. 2010. Functional clustering of periodic transcriptional profiles through arma( p,q). PLoS ONE (in press).
    • (2010) PLoS ONE
    • Ning, L.1    McMurry, T.2    Berg, A.3
  • 24
    • 0037433769 scopus 로고    scopus 로고
    • Statistical tests for identifying differentially expressed genes in time-course microarray experiments
    • Park, T., Yi, S.G., Lee, S., et al. 2003. Statistical tests for identifying differentially expressed genes in time-course microarray experiments. Bioinformatics 19, 694.
    • (2003) Bioinformatics , vol.19 , pp. 694
    • Park, T.1    Yi, S.G.2    Lee, S.3
  • 25
  • 26
    • 0035870634 scopus 로고    scopus 로고
    • Partslist: A web-based system for dynamically ranking protein folds based on disparate attributes, including whole-genome expression and interaction information
    • Qian, J., Stenger, B., Wilson, C.A., et al. 2001. Partslist: a web-based system for dynamically ranking protein folds based on disparate attributes, including whole-genome expression and interaction information. Nucleic Acids Res. 29, 1750.
    • (2001) Nucleic Acids Res , vol.29 , pp. 1750
    • Qian, J.1    Stenger, B.2    Wilson, C.A.3
  • 28
    • 3543042493 scopus 로고    scopus 로고
    • Periodic gene expression program of the fission yeast cell cycle
    • Rustici, G., Mata, J., Kivinen, K., et al. 2004. Periodic gene expression program of the fission yeast cell cycle. Nat. Genet. 36, 809-817.
    • (2004) Nat. Genet. , vol.36 , pp. 809-817
    • Rustici, G.1    Mata, J.2    Kivinen, K.3
  • 29
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • Spellman, P.T., Sherlock, G., Zhang, M.Q., et al. 1998. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. cell 9, 3273.
    • (1998) Mol. Biol. Cell , vol.9 , pp. 3273
    • Spellman, P.T.1    Sherlock, G.2    Zhang, M.Q.3
  • 30
    • 24644519314 scopus 로고    scopus 로고
    • Significance analysis of time course microarray experiments
    • Storey, J.D., Xiao, W., Leek, J.T., et al. 2005. Significance analysis of time course microarray experiments. Proc. Natl. Acad. Sci. USA 102, 12837.
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 12837
    • Storey, J.D.1    Xiao, W.2    Leek, J.T.3
  • 32
    • 0036887974 scopus 로고    scopus 로고
    • Stabilised wavelet transforms for non-equispaced data smoothing
    • Vanraes, E., Jansen, M., and Bultheel, A. 2002. Stabilised wavelet transforms for non-equispaced data smoothing. Signal Process. 82, 1979-1990.
    • (2002) Signal Process , vol.82 , pp. 1979-1990
    • Vanraes, E.1    Jansen, M.2    Bultheel, A.3
  • 35
    • 73849140082 scopus 로고    scopus 로고
    • A unified mixed effects model for gene set analysis of time course microarray experiments
    • Wang, L., Chen, X., Wolfinger, R.D., et al. 2009. A unified mixed effects model for gene set analysis of time course microarray experiments. Statist. Appl. Genet. Mol. Biol. 8, 47.
    • (2009) Statist. Appl. Genet. Mol. Biol. , vol.8 , pp. 47
    • Wang, L.1    Chen, X.2    Wolfinger, R.D.3
  • 36
    • 33845900991 scopus 로고    scopus 로고
    • Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables
    • Zapala, M.A., and Schork, N.J. 2006. Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables. Proc. Natl. Acad. Sci. USA 103, 19430.
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 19430
    • Zapala, M.A.1    Schork, N.J.2
  • 37
    • 0035826942 scopus 로고    scopus 로고
    • Statistical modeling of large microarray data sets to identify stimulusresponse profiles
    • Zhao, L.P., Prentice, R., and Breeden, L. 2001. Statistical modeling of large microarray data sets to identify stimulusresponse profiles. Proc. Natl. Acad. Sci. USA 98, 5631.
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 5631
    • Zhao, L.P.1    Prentice, R.2    Breeden, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.