-
1
-
-
34250217767
-
A comprehensive and robust procedure for obtaining the nofit polygon using Minkowski sums
-
Bennell, J. A., & Song, X. (2008). A comprehensive and robust procedure for obtaining the nofit polygon using Minkowski sums. Computers and Operational Research, 35(1), 267-281.
-
(2008)
Computers and Operational Research
, vol.35
, Issue.1
, pp. 267-281
-
-
Bennell, J.A.1
Song, X.2
-
2
-
-
33751335925
-
Complete and robust no-fit polygon generation for the irregular stock cutting problem
-
Burke, E. K., Hellier, R. S. R., Kendall, G., & Whitwell, G. (2007). Complete and robust no-fit polygon generation for the irregular stock cutting problem. European Journal of Operational Research, 179(1), 27-49.
-
(2007)
European Journal of Operational Research
, vol.179
, Issue.1
, pp. 27-49
-
-
Burke, E.K.1
Hellier, R.S.R.2
Kendall, G.3
Whitwell, G.4
-
3
-
-
0024137119
-
-
Culberson, J. C., & Reckhow, R. A. (1988). Covering polygons is hard. In Proceedings of 29th IEEE conference on foundations of computer science (pp. 601-611).
-
-
-
-
4
-
-
0003091471
-
Geometry. Shoemaking and the milk tray problem
-
Cunninghame-Green, R. (1989). Geometry. Shoemaking and the milk tray problem. New Scientist, 1677, 50-53.
-
(1989)
New Scientist
, vol.1677
, pp. 50-53
-
-
Cunninghame-Green, R.1
-
5
-
-
84873014521
-
-
Daniels, K., & Inkulu, R. (2001). Translational polygon covering using intersection graphs. In Proceedings of the thirteenth Canadian conference on computational geometry (pp. 61-64).
-
-
-
-
6
-
-
84873003919
-
-
Daniels, K., Mathur, A., & Grinde, R. (2003). A combinatorial maximum cover approach to 2D translational geometric covering. In Proceeedings of 15th Canadian conference on computational geometry (pp. 2-5). Halifax, Nova Scotia, Canada, August 11-13, 2003.
-
-
-
-
8
-
-
77956060953
-
An algebra of polygons through the notation of negative shapes
-
Ghosh, P. K. (1991). An algebra of polygons through the notation of negative shapes. CVGIP: Imag Understand, 17, 357-378.
-
(1991)
CVGIP: Imag Understand
, vol.17
, pp. 357-378
-
-
Ghosh, P.K.1
-
9
-
-
84872983748
-
-
Scheithauer, G., Stoyan, Y., Gil, N., & Romanova, T. (2003). Phi-functions for circular segments. Prepr. Technische Univarsitat Dresden, MATH-NM-7-2003. Dresden.
-
-
-
-
10
-
-
0020942665
-
Mathematical methods for geometric design
-
Proceeding PROLAMAT82LeningradUSSR, 16-18 May, 1982, Amsterdam: North-Holland
-
Stoyan, Y. (1983). Mathematical methods for geometric design. In Advances in CAD/CAM//. Proceeding PROLAMAT82. Leningrad, USSR, 16-18 May, 1982 (pp. 67-86). Amsterdam: North-Holland.
-
(1983)
Advances in CAD/CAM//
, pp. 67-86
-
-
Stoyan, Y.1
-
11
-
-
34548252171
-
Phi-function of non-convex polygons with rotations
-
Stoyan, Y. (2003). Phi-function of non-convex polygons with rotations. Journal of Mechanical Engineering, 6(1), 74-86.
-
(2003)
Journal of Mechanical Engineering
, vol.6
, Issue.1
, pp. 74-86
-
-
Stoyan, Y.1
-
14
-
-
0034230646
-
A method of optimal lattice packing of congruent oriented polygons in the plane
-
Stoyan, Y., & Patsuk, V. N. (2000). A method of optimal lattice packing of congruent oriented polygons in the plane. European Journal of Operational Research, 124, 204-216.
-
(2000)
European Journal of Operational Research
, vol.124
, pp. 204-216
-
-
Stoyan, Y.1
Patsuk, V.N.2
-
15
-
-
26444456404
-
Minkowski's sum and the hodograph of the dense allocation vector function
-
(In Russian)
-
Stoyan, Y., & Ponomarenko, L. D. (1977). Minkowski's sum and the hodograph of the dense allocation vector function. Reports of the Ukrainian SSR Academy of Science, A(10), 888-890 (In Russian).
-
(1977)
Reports of the Ukrainian SSR Academy of Science
, vol.A
, Issue.10
, pp. 888-890
-
-
Stoyan, Y.1
Ponomarenko, L.D.2
-
16
-
-
0030570349
-
Mathematical model and method of searching for a local extremum for the non-convex oriented polygons allocation problem
-
Stoyan, Y., Novozhilova, M., & Kartashov, A. (1996). Mathematical model and method of searching for a local extremum for the non-convex oriented polygons allocation problem. European Journal of Operational Research, 92, 193-210.
-
(1996)
European Journal of Operational Research
, vol.92
, pp. 193-210
-
-
Stoyan, Y.1
Novozhilova, M.2
Kartashov, A.3
-
17
-
-
33751347773
-
Phi-functions for primary 2D-objects
-
Stoyan, Y., Terno, J., Scheithauer, G., Gil, N., & Romanova, T. (2002a). Phi-functions for primary 2D-objects. Studia Informatica Universalis, 2(1), 1-32.
-
(2002)
Studia Informatica Universalis
, vol.2
, Issue.1
, pp. 1-32
-
-
Stoyan, Y.1
Terno, J.2
Scheithauer, G.3
Gil, N.4
Romanova, T.5
-
18
-
-
17544374929
-
Construction of a Phi-function for two convex polytopes
-
Stoyan, Y., Terno, J., Gil, M., Romanova, T., & Scheithauer, G. (2002b). Construction of a Phi-function for two convex polytopes. Applicationes Mathematicae, 29(2), 199-218.
-
(2002)
Applicationes Mathematicae
, vol.29
, Issue.2
, pp. 199-218
-
-
Stoyan, Y.1
Terno, J.2
Gil, M.3
Romanova, T.4
Scheithauer, G.5
-
19
-
-
33744796726
-
Phi-functions for complex 2D-objects
-
Stoyan, Y., Scheithauer, G., Gil, N., & Romanova, T. (2004). Phi-functions for complex 2D-objects. 4OR (Operations Research): Quarterly Journal of the Belgian, French and Italian Operations Research Societies, 2, 69-84.
-
(2004)
4OR (Operations Research): Quarterly Journal of the Belgian, French and Italian Operations Research Societies
, vol.2
, pp. 69-84
-
-
Stoyan, Y.1
Scheithauer, G.2
Gil, N.3
Romanova, T.4
-
20
-
-
26444620151
-
Mathematical modeling of interaction of primary geometric 3D objects
-
Translated from Kibernetika i Sistemnyi Analiz, 3, 19-31
-
Stoyan, Y., Scheithauer, G., & Romanova, T. (2005a). Mathematical modeling of interaction of primary geometric 3D objects. Cybernetics and Systems Analysis, 41(3), 332-342. Translated from Kibernetika i Sistemnyi Analiz, 3, 19-31.
-
(2005)
Cybernetics and Systems Analysis
, vol.41
, Issue.3
, pp. 332-342
-
-
Stoyan, Y.1
Scheithauer, G.2
Romanova, T.3
-
21
-
-
17544368701
-
Packing of convex polytopes into a parallelepiped
-
Stoyan, Y., Gil, N., Scheithauer, G., Pankratov, A., & Magdalina, I. (2005b). Packing of convex polytopes into a parallelepiped. Optimization, 54(2), 215-235.
-
(2005)
Optimization
, vol.54
, Issue.2
, pp. 215-235
-
-
Stoyan, Y.1
Gil, N.2
Scheithauer, G.3
Pankratov, A.4
Magdalina, I.5
-
22
-
-
0002323154
-
Packing and covering
-
J. Goodman, J. O'Rourke (Eds.), New York: CRC Press
-
Toth, G. F. (1997). Packing and covering. In J. Goodman & J. O'Rourke (Eds.), Handbook of discrete and computational geometry. New York: CRC Press.
-
(1997)
Handbook of Discrete and Computational Geometry
-
-
Toth, G.F.1
|