-
1
-
-
0000710299
-
Queries and concept learning
-
D. Angluin. Queries and concept learning. Mach. Learn., 2(4):319-342, 1988.
-
(1988)
Mach. Learn.
, vol.2
, Issue.4
, pp. 319-342
-
-
Angluin, D.1
-
3
-
-
0028424239
-
Improving generalization with active learning
-
D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learning. Mach. Learn., 15(2):201-221, 1994.
-
(1994)
Mach. Learn.
, vol.15
, Issue.2
, pp. 201-221
-
-
Cohn, D.1
Atlas, L.2
Ladner, R.3
-
5
-
-
4644367942
-
An efficient boosting algorithm for combining preferences
-
Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for combining preferences. J. Mach. Learn. Res., 4:933-969, 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.4
, pp. 933-969
-
-
Freund, Y.1
Iyer, R.2
Schapire, R.E.3
Singer, Y.4
-
6
-
-
84880855398
-
Optimistic active learning using mutual information
-
Y. Guo and R. Greiner. Optimistic active learning using mutual information. In IJCAI, 2007.
-
(2007)
IJCAI
-
-
Guo, Y.1
Greiner, R.2
-
7
-
-
79551702937
-
Discriminative batch mode active learning
-
Y. Guo and D. Schuurmans. Discriminative batch mode active learning. In NIPS, 2007.
-
(2007)
NIPS
-
-
Guo, Y.1
Schuurmans, D.2
-
8
-
-
36448966739
-
Laplacian optimal design for image retrieval
-
X. He, W. Min, D. Cai, and K. Zhou. Laplacian optimal design for image retrieval. In SIGIR, 2007.
-
(2007)
SIGIR
-
-
He, X.1
Min, W.2
Cai, D.3
Zhou, K.4
-
9
-
-
34250637963
-
Large-scale text categorization by batch mode active learning
-
S. C. Hoi, R. Jin, and M. R. Lyu. Large-scale text categorization by batch mode active learning. In WWW, 2006.
-
(2006)
WWW
-
-
Hoi, S.C.1
Jin, R.2
Lyu, M.R.3
-
10
-
-
33749263388
-
Batch mode active learning and its application to medical image classification
-
S. C. Hoi, R. Jin, J. Zhu, and M. R. Lyu. Batch mode active learning and its application to medical image classification. In ICML, 2006.
-
(2006)
ICML
-
-
Hoi, S.C.1
Jin, R.2
Zhu, J.3
Lyu, M.R.4
-
11
-
-
85013879626
-
A sequential algorithm for training text classifiers
-
D. D. Lewis and W. A. Gale. A sequential algorithm for training text classifiers. In SIGIR, 1994.
-
(1994)
SIGIR
-
-
Lewis, D.D.1
Gale, W.A.2
-
12
-
-
84876811202
-
RCV1: A new benchmark collection for text categorization research
-
D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1: A new benchmark collection for text categorization research. J. Mach. Learn. Res., 5:361-397, 2004.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 361-397
-
-
Lewis, D.D.1
Yang, Y.2
Rose, T.G.3
Li, F.4
-
13
-
-
0000695404
-
Information-based objective functions for active data selection
-
D. MacKay. Information-based objective functions for active data selection. Neural Comput., 4(4):590-604, 1992.
-
(1992)
Neural Comput.
, vol.4
, Issue.4
, pp. 590-604
-
-
MacKay, D.1
-
14
-
-
0000314722
-
Employing EM and pool-based active learning for text classification
-
A. McCallum and K. Nigam. Employing EM and pool-based active learning for text classification. In ICML, 1998.
-
(1998)
ICML
-
-
McCallum, A.1
Nigam, K.2
-
15
-
-
14344265134
-
Active learning using pre-clustering
-
H. T. Nguyen and A. Smeulders. Active learning using pre-clustering. In ICML, 2004.
-
(2004)
ICML
-
-
Nguyen, H.T.1
Smeulders, A.2
-
16
-
-
0442319140
-
Toward optimal active learning through sampling estimation of error reduction
-
N. Roy and A. McCallum. Toward optimal active learning through sampling estimation of error reduction. In ICML, 2001.
-
(2001)
ICML
-
-
Roy, N.1
McCallum, A.2
-
18
-
-
0042868698
-
Support vector machine active learning with applications to text classification
-
S. Tong and D. Koller. Support vector machine active learning with applications to text classification. J. Mach. Learn. Res., 2:45-66, 2002.
-
(2002)
J. Mach. Learn. Res.
, vol.2
, pp. 45-66
-
-
Tong, S.1
Koller, D.2
-
19
-
-
85024373635
-
A re-examination of text categorization methods
-
Y. Yang and X. Liu. A re-examination of text categorization methods. In SIGIR, 1999.
-
(1999)
SIGIR
-
-
Yang, Y.1
Liu, X.2
-
20
-
-
33749265864
-
Active learning via transductive experimental design
-
K. Yu, J. Bi, and V. Tresp. Active learning via transductive experimental design. In ICML, 2006.
-
(2006)
ICML
-
-
Yu, K.1
Bi, J.2
Tresp, V.3
-
21
-
-
57349188463
-
Non-greedy active learning for text categorization using convex transductive experimental design
-
K. Yu, S. Zhu, W. Xu, and Y. Gong. Non-greedy active learning for text categorization using convex transductive experimental design. In SIGIR, 2008.
-
(2008)
SIGIR
-
-
Yu, K.1
Zhu, S.2
Xu, W.3
Gong, Y.4
-
22
-
-
1542347782
-
Robustness of regularized linear classification methods in text categorization
-
J. Zhang and Y. Yang. Robustness of regularized linear classification methods in text categorization. In SIGIR, 2003.
-
(2003)
SIGIR
-
-
Zhang, J.1
Yang, Y.2
-
23
-
-
77956028074
-
Convex experimental design using manifold structure for image retrieval
-
L. Zhang, C. Chen, W. Chen, J. Bu, D. Cai, and X. He. Convex experimental design using manifold structure for image retrieval. In ACM MM, 2009.
-
(2009)
ACM MM
-
-
Zhang, L.1
Chen, C.2
Chen, W.3
Bu, J.4
Cai, D.5
He, X.6
-
24
-
-
0001868572
-
Text categorization based on regularized linear classification methods
-
T. Zhang and F. J. Oles. Text categorization based on regularized linear classification methods. Inform. Retrieval, 4(1):5-31, 2001.
-
(2001)
Inform. Retrieval
, vol.4
, Issue.1
, pp. 5-31
-
-
Zhang, T.1
Oles, F.J.2
-
25
-
-
14344254639
-
Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions
-
X. Zhu, J. Lafferty, and Z. Ghahramani. Combining active learning and semi-supervised learning using gaussian fields and harmonic functions. In ICML Workshop, 2003.
-
(2003)
ICML Workshop
-
-
Zhu, X.1
Lafferty, J.2
Ghahramani, Z.3
|