메뉴 건너뛰기




Volumn 215, Issue , 2010, Pages 427-432

Kernel-based hybrid random fields for nonparametric density estimation

Author keywords

[No Author keywords available]

Indexed keywords

GRAPHIC METHODS; LEARNING ALGORITHMS; MAXIMUM LIKELIHOOD ESTIMATION; SPEECH RECOGNITION;

EID: 77956014119     PISSN: 09226389     EISSN: 18798314     Source Type: Book Series    
DOI: 10.3233/978-1-60750-606-5-427     Document Type: Conference Paper
Times cited : (5)

References (25)
  • 2
    • 0000582521 scopus 로고
    • Statistical analysis of non-lattice data
    • Julian Besag, 'Statistical Analysis of Non-Lattice Data', The Statistician, 24, 179-195, (1975).
    • (1975) The Statistician , vol.24 , pp. 179-195
    • Besag, J.1
  • 5
    • 0000665083 scopus 로고
    • Nonparametric estimation of a multidimensional probability density
    • V.A. Epanechnikov, 'Nonparametric Estimation of a Multidimensional Probability Density', Theory of Probability and its Applications, 14, 153-158, (1969).
    • (1969) Theory of Probability and Its Applications , vol.14 , pp. 153-158
    • Epanechnikov, V.A.1
  • 6
    • 68149183583 scopus 로고    scopus 로고
    • A hybrid random field model for scalable statistical learning
    • Antonino Freno, Edmondo Trentin, and Marco Gori, 'A Hybrid Random Field Model for Scalable Statistical Learning', Neural Networks, 22, 603-613, (2009).
    • (2009) Neural Networks , vol.22 , pp. 603-613
    • Freno, A.1    Trentin, E.2    Gori, M.3
  • 8
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Jerome Friedman, Trevor Hastie, and Robert Tibshirani, 'Sparse Inverse Covariance Estimation with the Graphical Lasso', Biostatistics, 9, 432-441, (2008).
    • (2008) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 11
    • 85156253956 scopus 로고
    • Discovering structure in continous variables using bayesian networks
    • Reimar Hofmann and Volker Tresp, 'Discovering Structure in Continous Variables Using Bayesian Networks', in Advances in Neural Information Processing Systems, pp. 500-506, (1995).
    • (1995) Advances in Neural Information Processing Systems , pp. 500-506
    • Hofmann, R.1    Tresp, V.2
  • 16
    • 70450277253 scopus 로고    scopus 로고
    • The nonparanormal: Semiparametric estimation of high dimensional undirected graphs
    • Han Liu, John Lafferty, and Larry Wasserman, 'The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs', Journal of Machine Learning Research, 10, 2295-2328, (2009).
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 2295-2328
    • Liu, H.1    Lafferty, J.2    Wasserman, L.3
  • 17
    • 29344470807 scopus 로고    scopus 로고
    • Distribution-free learning of bayesian network structure in continuous domains
    • Dimitris Margaritis, 'Distribution-Free Learning of Bayesian Network Structure in Continuous Domains', in AAAI, pp. 825-830, (2005).
    • (2005) AAAI , pp. 825-830
    • Margaritis, D.1
  • 20
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • Emanuel Parzen, 'On Estimation of a Probability Density Function and Mode', Annals of Mathematical Statistics, 33, 1065-1076, (1962).
    • (1962) Annals of Mathematical Statistics , vol.33 , pp. 1065-1076
    • Parzen, E.1
  • 23
    • 0002629995 scopus 로고
    • Conditional probability density and regression estimators
    • ed., P.R. Krishnaiah, Academic Press, New York
    • M. Rosenblatt, 'Conditional Probability Density and Regression Estimators', in Multivariate Analysis, ed., P.R. Krishnaiah, volume II, 25-31, Academic Press, New York, (1969).
    • (1969) Multivariate Analysis , vol.2 , pp. 25-31
    • Rosenblatt, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.