메뉴 건너뛰기




Volumn 52, Issue 9-10, 2010, Pages 1451-1462

Three positive periodic solutions to nonlinear neutral functional differential equations with impulses and parameters on time scales

Author keywords

Impulses; Leggett Williams fixed point theorem; Neutral functional differential equations; Periodic solutions; Time scales

Indexed keywords

IMPULSES; LEGGETT-WILLIAMS; NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS; PERIODIC SOLUTION; TIME-SCALES;

EID: 77956013041     PISSN: 08957177     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.mcm.2010.06.009     Document Type: Article
Times cited : (20)

References (15)
  • 1
    • 0035285146 scopus 로고    scopus 로고
    • Periodic solutions of periodic delay Lotka-Volterra equations and systems
    • Li Y., Kuang Y. Periodic solutions of periodic delay Lotka-Volterra equations and systems. J. Math. Anal. Appl. 2001, 255:260-280.
    • (2001) J. Math. Anal. Appl. , vol.255 , pp. 260-280
    • Li, Y.1    Kuang, Y.2
  • 2
    • 18144371962 scopus 로고    scopus 로고
    • Positive periodic solutions of nonlinear functional difference equations depending on parameter
    • Li Y.K., Zhu L.F., Liu P. Positive periodic solutions of nonlinear functional difference equations depending on parameter. Comput. Math. Appl. 2004, 48:1453-1459.
    • (2004) Comput. Math. Appl. , vol.48 , pp. 1453-1459
    • Li, Y.K.1    Zhu, L.F.2    Liu, P.3
  • 3
    • 0742317417 scopus 로고    scopus 로고
    • Existence of positive periodic soltions for nonautonomous functional differential equations
    • Cheng S., Zhang G. Existence of positive periodic soltions for nonautonomous functional differential equations. Electron. J. Differential Equations 2001, 59:1-8.
    • (2001) Electron. J. Differential Equations , vol.59 , pp. 1-8
    • Cheng, S.1    Zhang, G.2
  • 4
    • 0942277585 scopus 로고    scopus 로고
    • Positive periodic solutions of infinite delay functional differential equations depending on a parameter
    • Liu P., Li Y. Positive periodic solutions of infinite delay functional differential equations depending on a parameter. Appl. Math. Comput. 2004, 150:159-168.
    • (2004) Appl. Math. Comput. , vol.150 , pp. 159-168
    • Liu, P.1    Li, Y.2
  • 5
    • 3543075159 scopus 로고    scopus 로고
    • Positive periodic solutions of functional differential equations
    • Wang H. Positive periodic solutions of functional differential equations. J. Differential Equations 2004, 202:354-366.
    • (2004) J. Differential Equations , vol.202 , pp. 354-366
    • Wang, H.1
  • 6
    • 38749089826 scopus 로고    scopus 로고
    • Existence of positive periodic solutions for a functional differential equation with a parameter
    • Wu Y. Existence of positive periodic solutions for a functional differential equation with a parameter. Nonlinear Anal. 2008, 68:1954-1962.
    • (2008) Nonlinear Anal. , vol.68 , pp. 1954-1962
    • Wu, Y.1
  • 7
    • 0043191874 scopus 로고
    • Periodic solutions for some nonlinear differential equations of neutral type
    • Sella E. Periodic solutions for some nonlinear differential equations of neutral type. Nonlinear Anal. 1991, 17(2):139-151.
    • (1991) Nonlinear Anal. , vol.17 , Issue.2 , pp. 139-151
    • Sella, E.1
  • 8
    • 38949197447 scopus 로고    scopus 로고
    • Three periodic solutions of nonlinear neutral functional differential equations
    • Wang Q., Dai B.X. Three periodic solutions of nonlinear neutral functional differential equations. Nonlinear Anal. 2008, 9:977-984.
    • (2008) Nonlinear Anal. , vol.9 , pp. 977-984
    • Wang, Q.1    Dai, B.X.2
  • 9
    • 0036004593 scopus 로고    scopus 로고
    • Double solutions of impulsive dynamic boundary value problems on time scales
    • Henderson J. Double solutions of impulsive dynamic boundary value problems on time scales. J. Difference Equ. Appl. 2002, 8:7-11.
    • (2002) J. Difference Equ. Appl. , vol.8 , pp. 7-11
    • Henderson, J.1
  • 10
    • 0036953285 scopus 로고    scopus 로고
    • The quasilinearization method for boundary value problems on time scales
    • Merdivenci Atici F., Eloe P.W., Kaymakcalan B. The quasilinearization method for boundary value problems on time scales. J. Math. Anal. Appl. 2002, 276:357-372.
    • (2002) J. Math. Anal. Appl. , vol.276 , pp. 357-372
    • Merdivenci Atici, F.1    Eloe, P.W.2    Kaymakcalan, B.3
  • 12
    • 9644259238 scopus 로고    scopus 로고
    • Initial value problem for first-order integro-differential equation of Volterra type on time scales
    • Xing Y., Han M., Zheng G. Initial value problem for first-order integro-differential equation of Volterra type on time scales. Nonlinear Anal. 2005, 60:429-442.
    • (2005) Nonlinear Anal. , vol.60 , pp. 429-442
    • Xing, Y.1    Han, M.2    Zheng, G.3
  • 13
    • 0000394603 scopus 로고
    • Multiple positive fixed points of nonlinear operator on ordered Banach spaces
    • Leggett R.W., Williams L.R. Multiple positive fixed points of nonlinear operator on ordered Banach spaces. Indiana Math. J. 1979, 28:673-688.
    • (1979) Indiana Math. J. , vol.28 , pp. 673-688
    • Leggett, R.W.1    Williams, L.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.