메뉴 건너뛰기




Volumn , Issue , 2010, Pages 2536-2543

Diffusion filtering without parameter tuning: Models and inference tools

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN FRAMEWORKS; BAYESIAN INFERENCE; DERIVATIVE FILTER; DETERMINISTIC APPROACH; DIFFUSION FILTERING; ERROR BOUND; HAND-TUNING; IMAGE CHARACTERISTICS; IMAGE DE-NOISING; IMAGE STATISTICS; INFERENCE TOOLS; INFLUENCE FUNCTIONS; LEARNING SCHEMES; MARKOV RANDOM FIELDS; NOISE LEVELS; PARAMETER-TUNING; PROBABILISTIC ESTIMATION; REGULARIZATION APPROACH; REGULARIZATION SCHEMES; STATE OF THE ART; STILL MISSING;

EID: 77955991437     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2010.5539959     Document Type: Conference Paper
Times cited : (13)

References (37)
  • 2
    • 0034241361 scopus 로고    scopus 로고
    • Gradient-based optimization of hyperparameters
    • Y. Bengio. Gradient-based optimization of hyperparameters. Neural Comput., 12(8):1889-1900, 2000.
    • (2000) Neural Comput. , vol.12 , Issue.8 , pp. 1889-1900
    • Bengio, Y.1
  • 5
    • 0026821645 scopus 로고
    • Image selective smoothing and edge detection by nonlinear diffusion
    • F. Catte, P. L. Lions, J. M. Morel, and T. Coll. Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal., 29(1):182-193, 1992.
    • (1992) SIAM J. Numer. Anal. , vol.29 , Issue.1 , pp. 182-193
    • Catte, F.1    Lions, P.L.2    Morel, J.M.3    Coll, T.4
  • 7
    • 33645655614 scopus 로고    scopus 로고
    • Image denoising with block-matching and 3d filtering
    • Electronic Im aging06
    • K. Dabov, R. Foi, V. Katkovnik, and K. Egiazarian. Image denoising with block-matching and 3d filtering. In in Electronic Im aging06, Proc. SPIE 6064, no. 6064A-30, 2006.
    • (2006) Proc. SPIE , vol.6064 , Issue.6064 A-30
    • Dabov, K.1    Foi, R.2    Katkovnik, V.3    Egiazarian, K.4
  • 8
    • 54249114613 scopus 로고    scopus 로고
    • On the relation between anisotropic diffusion and iterated adaptive filtering
    • 30. DAGM Symposium Mustererkennung, Springer
    • M. Felsberg. On the relation between anisotropic diffusion and iterated adaptive filtering. In 30. DAGM Symposium Mustererkennung, volume 5096 of LNCS, pages 436-445. Springer, 2008.
    • (2008) LNCS , vol.5096 , pp. 436-445
    • Felsberg, M.1
  • 9
    • 0015319572 scopus 로고
    • Restoring with maximum likelihood and maximum entropy
    • B. R. Frieden. Restoring with maximum likelihood and maximum entropy. J. Opt. Soc. Am., 62:511-518, 1972.
    • (1972) J. Opt. Soc. Am. , vol.62 , pp. 511-518
    • Frieden, B.R.1
  • 11
    • 0026835074 scopus 로고
    • Constrained restoration and the recovery of discontinuities
    • D. Geman and G. Reynolds. Constrained restoration and the recovery of discontinuities. IEEE Trans. Pattern Anal. Mach. Intell., 14(3):367-383, 1992.
    • (1992) IEEE Trans. Pattern Anal. Mach. Intell. , vol.14 , Issue.3 , pp. 367-383
    • Geman, D.1    Reynolds, G.2
  • 12
    • 0002600688 scopus 로고
    • Bayesian inductive inference and maximum entropy
    • G. J. Erickson and C. R. Smith, editors
    • S. Gull. Bayesian inductive inference and maximum entropy. G. J. Erickson and C. R. Smith, editors,Maximum Entropy and Bayesian Methods in Science and Engineering, 1:53-74, 1988.
    • (1988) Maximum Entropy and Bayesian Methods in Science and Engineering , vol.1 , pp. 53-74
    • Gull, S.1
  • 13
    • 0002600689 scopus 로고
    • Developments in maximum entropy data analysis
    • S. Gull. Developments in maximum entropy data analysis. Maximum Entropy and Bayesian Methods, pages 53-71, 1989.
    • (1989) Maximum Entropy and Bayesian Methods , pp. 53-71
    • Gull, S.1
  • 14
    • 0000236333 scopus 로고    scopus 로고
    • The L-curve and its use in the numerical treatment of inverse problems
    • Computational Inverse Problems in Electrocardiology, ed. P. Johnston, WIT Press
    • P. C. Hansen. The L-curve and its use in the numerical treatment of inverse problems. In Computational Inverse Problems in Electrocardiology, ed. P. Johnston, Advances in Computational Bioengineering, pages 119-142. WIT Press, 2000.
    • (2000) Advances in Computational Bioengineering , pp. 119-142
    • Hansen, P.C.1
  • 15
    • 0002914778 scopus 로고
    • Iterative Methods for Linear and Nonlinear Equations
    • SIAM
    • C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations. Frontiers in Applied Mathematics 16, SIAM, 1995.
    • (1995) Frontiers in Applied Mathematics , vol.16
    • Kelley, C.T.1
  • 16
    • 1342331579 scopus 로고    scopus 로고
    • Zone determinant expansions for nuclear lattice simulations
    • Dec
    • D. J. Lee and I. C. F. Ipsen. Zone determinant expansions for nuclear lattice simulations. Phys. Rev. C, 68(6):064003, Dec 2003.
    • (2003) Phys. Rev. C , vol.68 , Issue.6 , pp. 064003
    • Lee, D.J.1    Ipsen, I.C.F.2
  • 17
    • 25144445746 scopus 로고    scopus 로고
    • Bayesian reconstruction for transmission tomography with scale hyperparameter estimation
    • A. López, R. Molina, and A. K. Katsaggelos. Bayesian reconstruction for transmission tomography with scale hyperparameter estimation. In IbPRIA (2), pages 455-462, 2005.
    • (2005) IbPRIA , Issue.2 , pp. 455-462
    • López, A.1    Molina, R.2    Katsaggelos, A.K.3
  • 19
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the 8th IEEE International Conference on Computer Vision (ICCV), pages 416-423, 2001.
    • (2001) Proceedings of the 8th IEEE International Conference on Computer Vision (ICCV) , pp. 416-423
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 20
    • 33751368657 scopus 로고    scopus 로고
    • Blind deconvolution using a variational approach to parameter, image, and blur estimation
    • R. Molina, J. Mateos, and A. K. Katsaggelos. Blind deconvolution using a variational approach to parameter, image, and blur estimation. IEEE Transactions on Image Processing, 15(12):3715-3727, 2006.
    • (2006) IEEE Transactions on Image Processing , vol.15 , Issue.12 , pp. 3715-3727
    • Molina, R.1    Mateos, J.2    Katsaggelos, A.K.3
  • 21
    • 0025465145 scopus 로고
    • Scale-space and edge detection using anisotropic diffusion
    • P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell., 12(7):629-639, 1990.
    • (1990) IEEE Trans. Pattern Anal. Mach. Intell. , vol.12 , Issue.7 , pp. 629-639
    • Perona, P.1    Malik, J.2
  • 26
    • 70450207702 scopus 로고    scopus 로고
    • Learning optimized map estimates in continuously-valued mrf models
    • K. G. G. Samuel and M. F. Tappen. Learning optimized map estimates in continuously-valued mrf models. In CVPR, pages 477-484, 2009.
    • (2009) CVPR , pp. 477-484
    • Samuel, K.G.G.1    Tappen, M.F.2
  • 27
    • 4243530466 scopus 로고    scopus 로고
    • PhD thesis, Interdisciplinary Center for Scientific Computing, Univ. of Heidelberg
    • H. Scharr. Optimal Operators in Digital Image Processing. PhD thesis, Interdisciplinary Center for Scientific Computing, Univ. of Heidelberg, 2000.
    • (2000) Optimal Operators in Digital Image Processing
    • Scharr, H.1
  • 29
  • 30
    • 0000431384 scopus 로고
    • Maximum entropy image reconstruction: General algorithm
    • J. Skilling and R. Bryan. Maximum entropy image reconstruction: general algorithm. In Mon. Notices R. Astron. Soc. 211, pages 111-124, 1984.
    • (1984) Mon. Notices R. Astron. Soc. , vol.211 , pp. 111-124
    • Skilling, J.1    Bryan, R.2
  • 37
    • 0029703434 scopus 로고    scopus 로고
    • Frame: Filters, random fields, and minimax entropy- towards a unified theory for texture modeling
    • Washington, DC, USA, IEEE Computer Society
    • S. C. Zhu, Y. Wu, and D. Mumford. Frame: Filters, random fields, and minimax entropy- towards a unified theory for texture modeling. In Proc. of the Conference on Computer Vision and Pattern Recognition (CVPR), page 686,Washington, DC, USA, 1996. IEEE Computer Society.
    • (1996) Proc. of the Conference on Computer Vision and Pattern Recognition (CVPR) , pp. 686
    • Zhu, S.C.1    Wu, Y.2    Mumford, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.