메뉴 건너뛰기




Volumn 22, Issue 7, 2010, Pages 1698-1717

Learning spike-based population codes by reward and population feedback

Author keywords

[No Author keywords available]

Indexed keywords

ACTION POTENTIAL; ANIMAL; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; BIOLOGICAL MODEL; DECISION MAKING; FEEDBACK SYSTEM; HUMAN; LEARNING; LETTER; NERVE CELL; NERVE CELL NETWORK; PHYSIOLOGY; REACTION TIME; REWARD;

EID: 77955988359     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2010.05-09-1010     Document Type: Letter
Times cited : (13)

References (23)
  • 1
    • 33745726849 scopus 로고    scopus 로고
    • Neural correlations, population coding and computation
    • Averbeck, B., Latham, P., & Pouget, A. (2006). Neural correlations, population coding and computation. Nature Rev. Neurosci., 7, 358-366.
    • (2006) Nature Rev. Neurosci. , vol.7 , pp. 358-366
    • Averbeck, B.1    Latham, P.2    Pouget, A.3
  • 2
    • 0141928816 scopus 로고    scopus 로고
    • Dopamine, acetylcholine and nitric oxide systems interact to induce corticostriatal synaptic plasticity
    • Centonze, D., Gubellini, P., Pisani, A., Bernardi, G., & Calabresi, P. (2003). Dopamine, acetylcholine and nitric oxide systems interact to induce corticostriatal synaptic plasticity. Rev. Neurosci., 14, 207-216.
    • (2003) Rev. Neurosci. , vol.14 , pp. 207-216
    • Centonze, D.1    Gubellini, P.2    Pisani, A.3    Bernardi, G.4    Calabresi, P.5
  • 3
    • 1842608969 scopus 로고    scopus 로고
    • Neural representation of interval time
    • Durstewitz, D. (2004). Neural representation of interval time. Neuroreport, 15, 745-749.
    • (2004) Neuroreport , vol.15 , pp. 745-749
    • Durstewitz, D.1
  • 4
    • 33746652644 scopus 로고    scopus 로고
    • Gradient learning in spiking neural networks by dynamic perturbation of conductances
    • Fiete, I., & Seung, H. (2006). Gradient learning in spiking neural networks by dynamic perturbation of conductances. Phys. Rev. Letts., 97, 048104.
    • (2006) Phys. Rev. Letts. , vol.97 , pp. 048104
    • Fiete, I.1    Seung, H.2
  • 5
    • 34249708388 scopus 로고    scopus 로고
    • Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity
    • Florian, R. (2007). Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity. Neural Computation, 19, 1468-1502.
    • (2007) Neural Computation , vol.19 , pp. 1468-1502
    • Florian, R.1
  • 6
    • 0033087854 scopus 로고    scopus 로고
    • Neuromodulation, development and synaptic plasticity
    • Foehring, R., & Lorenzon, N. (1999). Neuromodulation, development and synaptic plasticity. Can. J. Exp. Psychol., 53, 45-61.
    • (1999) Can. J. Exp. Psychol. , vol.53 , pp. 45-61
    • Foehring, R.1    Lorenzon, N.2
  • 7
    • 34147179944 scopus 로고    scopus 로고
    • A neural circuit model of flexible sensori-motor mapping, learning and forgetting on multiple timescales
    • Fusi, S., Asaad, W., Miller, E., & Wang, X.-J. (2007). A neural circuit model of flexible sensori-motor mapping, learning and forgetting on multiple timescales. Neuron, 54, 319-333.
    • (2007) Neuron , vol.54 , pp. 319-333
    • Fusi, S.1    Asaad, W.2    Miller, E.3    Wang, X.-J.4
  • 8
    • 33344478663 scopus 로고    scopus 로고
    • The tempotron, a neuron that learns spike timing-based decision
    • Gütig, R., & Sompolinsky, H. (2006). The tempotron, a neuron that learns spike timing-based decision. Nature Neurosci., 9, 420-428.
    • (2006) Nature Neurosci. , vol.9 , pp. 420-428
    • Gütig, R.1    Sompolinsky, H.2
  • 9
    • 39949084303 scopus 로고    scopus 로고
    • Stability of the fittest, organizing learning through retroaxonal signals
    • Harris, K. (2008). Stability of the fittest, organizing learning through retroaxonal signals. Trends in Neurosci., 31, 130-136.
    • (2008) Trends in Neurosci. , vol.31 , pp. 130-136
    • Harris, K.1
  • 10
    • 34948906745 scopus 로고    scopus 로고
    • Solving the distal reward problem through linkage of STDP and dopamine signaling
    • Izhikevich, E. (2007). Solving the distal reward problem through linkage of STDP and dopamine signaling. Cerebral Cortex, 17, 2443-2452.
    • (2007) Cerebral Cortex , vol.17 , pp. 2443-2452
    • Izhikevich, E.1
  • 11
    • 9644274259 scopus 로고    scopus 로고
    • Persistent neural activity, prevalence and mechanisms
    • Major, G., & Tank, D. (2004). Persistent neural activity, prevalence and mechanisms. Curr. Opin. Neurobiol., 14, 675-684.
    • (2004) Curr. Opin. Neurobiol. , vol.14 , pp. 675-684
    • Major, G.1    Tank, D.2
  • 12
    • 33646901026 scopus 로고    scopus 로고
    • The presence of background dopamine signal converts long-term synaptic depression to potentiation in rat prefrontal cortex
    • Matsuda, Y., Marzo, A., & Otani, S. (2006). The presence of background dopamine signal converts long-term synaptic depression to potentiation in rat prefrontal cortex. J. Neurosci., 26, 4803-4810.
    • (2006) J. Neurosci. , vol.26 , pp. 4803-4810
    • Matsuda, Y.1    Marzo, A.2    Otani, S.3
  • 13
    • 0007118813 scopus 로고    scopus 로고
    • Learning and generalization theories of large committee machines
    • Monasson, R., & Zecchina, R. (1996). Learning and generalization theories of large committee machines. Mod. Phys. Lett. B, 9, 1887-1897.
    • (1996) Mod. Phys. Lett. B , vol.9 , pp. 1887-1897
    • Monasson, R.1    Zecchina, R.2
  • 14
    • 33646801243 scopus 로고    scopus 로고
    • Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning
    • Pfister, J., Toyoizumi, T., Barber, D., & Gerstner, W. (2006). Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning. Neural Computation, 18, 1318-1348.
    • (2006) Neural Computation , vol.18 , pp. 1318-1348
    • Pfister, J.1    Toyoizumi, T.2    Barber, D.3    Gerstner, W.4
  • 15
    • 0034329021 scopus 로고    scopus 로고
    • Information processing with population codes
    • Pouget, A., Dayan, P., & Zemel, R. (2000). Information processing with population codes. Nature Rev. Neurosci., 1, 125-132.
    • (2000) Nature Rev. Neurosci. , vol.1 , pp. 125-132
    • Pouget, A.1    Dayan, P.2    Zemel, R.3
  • 16
    • 1842578358 scopus 로고    scopus 로고
    • Climbing neuronal activity as an event-based cortical representation of time
    • Reutimann, J., Yakovlev, V., Fusi, S., & Senn, W. (2004). Climbing neuronal activity as an event-based cortical representation of time. J. Neurosci., 24(13), 3295-330.
    • (2004) J. Neurosci. , vol.24 , Issue.13 , pp. 3295-3330
    • Reutimann, J.1    Yakovlev, V.2    Fusi, S.3    Senn, W.4
  • 17
    • 34548552568 scopus 로고    scopus 로고
    • Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity
    • Erratum in, Neuron 56, 754
    • Seol, G., Ziburkus, J., Huang, S., Song, L., Kim, I., Takamiya, K., et al. (2007). Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity. Neuron, 55, 919-929. Erratum in, Neuron 56, 754.
    • (2007) Neuron , vol.55 , pp. 919-929
    • Seol, G.1    Ziburkus, J.2    Huang, S.3    Song, L.4    Kim, I.5    Takamiya, K.6
  • 18
    • 0347362917 scopus 로고    scopus 로고
    • Learning in spiking neural networks by reinforcement of stochastic synaptic transmission
    • Seung, H. (2003). Learning in spiking neural networks by reinforcement of stochastic synaptic transmission. Neuron, 40, 1063-1073.
    • (2003) Neuron , vol.40 , pp. 1063-1073
    • Seung, H.1
  • 19
    • 0039325414 scopus 로고    scopus 로고
    • Storage capacity of the fully connected committee machine
    • Urbanczik, R. (1997). Storage capacity of the fully connected committee machine. J. Phys. A, 30, L387-L391.
    • (1997) J. Phys. A. , vol.30
    • Urbanczik, R.1
  • 20
    • 60749100305 scopus 로고    scopus 로고
    • Reinforcement learning in populations of spiking neurons
    • Urbanczik, R., & Senn, W. (2009). Reinforcement learning in populations of spiking neurons. Nature Neurosci., 12, 250-252.
    • (2009) Nature Neurosci. , vol.12 , pp. 250-252
    • Urbanczik, R.1    Senn, W.2
  • 21
    • 0037028039 scopus 로고    scopus 로고
    • Probabilistic decision making by slow reverberation in cortical circuits
    • Wang, X. (2002). Probabilistic decision making by slow reverberation in cortical circuits. Neuron, 36, 955-968.
    • (2002) Neuron , vol.36 , pp. 955-968
    • Wang, X.1
  • 22
    • 27144462270 scopus 로고    scopus 로고
    • Learning curves for stochastic gradient descent in linear feedforward networks
    • Werfel, J., Xie, X., & Seung, H. S. (2005). Learning curves for stochastic gradient descent in linear feedforward networks. Neural Computation, 17, 2699-2718.
    • (2005) Neural Computation , vol.17 , pp. 2699-2718
    • Werfel, J.1    Xie, X.2    Seung, H.S.3
  • 23
    • 0000337576 scopus 로고
    • Simple statistical gradient-following algorithms for connectionist reinforcement learning
    • Williams, R. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 8, 229-256.
    • (1992) Machine Learning , vol.8 , pp. 229-256
    • Williams, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.