-
1
-
-
45149144372
-
Nonlinear prediction of chaotic time series
-
Casdagli M. Nonlinear prediction of chaotic time series. Physica D 1989;35:335-56.
-
(1989)
Physica D
, vol.35
, pp. 335-356
-
-
Casdagli, M.1
-
2
-
-
0000202504
-
Chaos and deterministic versus stochastic nonlinear modeling
-
Casdagli M. Chaos and deterministic versus stochastic nonlinear modeling. J Roy Stat Soc B 1991;54:303-24.
-
(1991)
J Roy Stat Soc B
, vol.54
, pp. 303-324
-
-
Casdagli, M.1
-
3
-
-
0037196231
-
Noise reduction in chaotic hydrologic time series: facts and doubts
-
Elshorbagy A, Simonovic SP, Panu US. Noise reduction in chaotic hydrologic time series: facts and doubts. J Hydrol 2002;256(3/4):845-8.
-
(2002)
J Hydrol
, vol.256
, Issue.3-4
, pp. 845-848
-
-
Elshorbagy, A.1
Simonovic, S.P.2
Panu, U.S.3
-
5
-
-
34548696055
-
Independent coordinates for strange attractors from mutual information
-
Frazer AM, Swinney HL. Independent coordinates for strange attractors from mutual information. Phys Rev A 1986;33(2):1134-40.
-
(1986)
Phys Rev A
, vol.33
, Issue.2
, pp. 1134-1140
-
-
Frazer, A.M.1
Swinney, H.L.2
-
6
-
-
40749093037
-
Measuring the strangeness of strange attractors
-
Grassberger P, Procaccia I. Measuring the strangeness of strange attractors. Physica D 1983;9:189-208.
-
(1983)
Physica D
, vol.9
, pp. 189-208
-
-
Grassberger, P.1
Procaccia, I.2
-
7
-
-
4243243202
-
Estimation of the Kolmogorov entropy from a chaotic signal
-
Grassberger P, Procaccia I. Estimation of the Kolmogorov entropy from a chaotic signal. Phys Rev A 1983;28:2591-3.
-
(1983)
Phys Rev A
, vol.28
, pp. 2591-2593
-
-
Grassberger, P.1
Procaccia, I.2
-
8
-
-
0000830305
-
Improved false nearest neighbor method to detect determinism in time series data
-
Hegger R, Kantz H. Improved false nearest neighbor method to detect determinism in time series data. Phys Rev E 1999;60:4970-3.
-
(1999)
Phys Rev E
, vol.60
, pp. 4970-4973
-
-
Hegger, R.1
Kantz, H.2
-
9
-
-
0001616408
-
An approach to error-estimation in the application of dimension algorithms
-
Mayer-Kress G, editor. New York: Springer
-
Holzfuss J, Mayer-Kress G. An approach to error-estimation in the application of dimension algorithms. In: Mayer-Kress G, editor. Dimensions and entropies in chaotic systems. New York: Springer; 1986. p. 114-22.
-
(1986)
Dimensions and entropies in chaotic systems
, pp. 114-122
-
-
Holzfuss, J.1
Mayer-Kress, G.2
-
10
-
-
0036475142
-
Characterization and prediction of runoff dynamics: a nonlinear dynamical view
-
Islam MN, Sivakumar B. Characterization and prediction of runoff dynamics: a nonlinear dynamical view. Adv Water Resour 2002;25:179-90.
-
(2002)
Adv Water Resour
, vol.25
, pp. 179-190
-
-
Islam, M.N.1
Sivakumar, B.2
-
11
-
-
0034642947
-
Noise reduction and prediction of hydrometeorological time series: dynamical systems approach vs. stochastic approach
-
Jayawardena AW, Gurung AB. Noise reduction and prediction of hydrometeorological time series: dynamical systems approach vs. stochastic approach. J Hydrol 2000;228:242-64.
-
(2000)
J Hydrol
, vol.228
, pp. 242-264
-
-
Jayawardena, A.W.1
Gurung, A.B.2
-
12
-
-
0028199319
-
Analysis and prediction of chaos in rainfall and stream flow time series
-
Jayawardena AW, Lai F. Analysis and prediction of chaos in rainfall and stream flow time series. J Hydrol 1994;153:23-52.
-
(1994)
J Hydrol
, vol.153
, pp. 23-52
-
-
Jayawardena, A.W.1
Lai, F.2
-
13
-
-
0001870258
-
A robust method to estimate the maximal Lyapunov exponent of a time series
-
Kantz H. A robust method to estimate the maximal Lyapunov exponent of a time series. Phys Lett A 1994;185:77-87.
-
(1994)
Phys Lett A
, vol.185
, pp. 77-87
-
-
Kantz, H.1
-
15
-
-
35949006791
-
Determining embedding dimension for phase space reconstruction using a geometric method
-
Kennel MB, Brown R, Abarbanel HDI. Determining embedding dimension for phase space reconstruction using a geometric method. Phys Rev A 1992;45:3403-11.
-
(1992)
Phys Rev A
, vol.45
, pp. 3403-3411
-
-
Kennel, M.B.1
Brown, R.2
Abarbanel, H.D.I.3
-
17
-
-
0344906115
-
Phase-space analysis of daily streamflow: characterization and prediction
-
Liu Q, Islam S, Rodriguez-lturbe I, Le Y. Phase-space analysis of daily streamflow: characterization and prediction. Adv Water Resour 1998;21:463-75.
-
(1998)
Adv Water Resour
, vol.21
, pp. 463-475
-
-
Liu, Q.1
Islam, S.2
Rodriguez-lturbe, I.3
Le, Y.4
-
18
-
-
0000020809
-
Correlation dimension and systematic geometric effects
-
Nerenberg MAH, Essex C. Correlation dimension and systematic geometric effects. Phys Rev A 1990;42(12):7065-74.
-
(1990)
Phys Rev A
, vol.42
, Issue.12
, pp. 7065-7074
-
-
Nerenberg, M.A.H.1
Essex, C.2
-
19
-
-
5544310124
-
Provenzale A. finite correlation dimension for stochastic systems with power law spectra
-
Osborne AR, Provenzale A. finite correlation dimension for stochastic systems with power law spectra. Physica D 1989;35:357-81.
-
(1989)
Physica D
, vol.35
, pp. 357-381
-
-
Osborne, A.R.1
-
20
-
-
35949021230
-
Geometry from a time series
-
Packard NH, Crutchfield JP, Farmer JD, Shaw RS. Geometry from a time series. Phys Rev Lett 1980;45(9):712-6.
-
(1980)
Phys Rev Lett
, vol.45
, Issue.9
, pp. 712-716
-
-
Packard, N.H.1
Crutchfield, J.P.2
Farmer, J.D.3
Shaw, R.S.4
-
21
-
-
0002519342
-
Clues to the existence of deterministic chaos in river flow
-
Porporato A, Ridolfi L. Clues to the existence of deterministic chaos in river flow. Int J Mod Phys B 1996;10(15):1821-62.
-
(1996)
Int J Mod Phys B
, vol.10
, Issue.15
, pp. 1821-1862
-
-
Porporato, A.1
Ridolfi, L.2
-
22
-
-
0030619033
-
Nonlinear analysis of river flow time sequences
-
Porporato A, Ridolfi L. Nonlinear analysis of river flow time sequences. Water Resour Res 1997;33(6):1353-67.
-
(1997)
Water Resour Res
, vol.33
, Issue.6
, pp. 1353-1367
-
-
Porporato, A.1
Ridolfi, L.2
-
23
-
-
0035879624
-
Multivariate nonlinear prediction of riverflow
-
Porporato A, Ridolfi L. Multivariate nonlinear prediction of riverflow. J Hydrol 2001;248:109-22.
-
(2001)
J Hydrol
, vol.248
, pp. 109-122
-
-
Porporato, A.1
Ridolfi, L.2
-
24
-
-
44049112233
-
Distinguishing between lowdimensional dynamics and randomness in measured time series
-
Provenzale A, Smith LA, Vio R, Murante G. Distinguishing between lowdimensional dynamics and randomness in measured time series. Physica D 1992;58:31-49.
-
(1992)
Physica D
, vol.58
, pp. 31-49
-
-
Provenzale, A.1
Smith, L.A.2
Vio, R.3
Murante, G.4
-
25
-
-
0029659665
-
A deterministic geometric representation of temporal rainfall: results for a storm in Boston
-
Puente CE, Obregon N. A deterministic geometric representation of temporal rainfall: results for a storm in Boston. Water Resour Res 1996;32(9):2825-39.
-
(1996)
Water Resour Res
, vol.32
, Issue.9
, pp. 2825-2839
-
-
Puente, C.E.1
Obregon, N.2
-
26
-
-
0000933887
-
The statistical properties of dimension calculations using small data sets
-
Ramsey JB, Yuan HJ. The statistical properties of dimension calculations using small data sets. Nonlinearity 1990;3:155-76.
-
(1990)
Nonlinearity
, vol.3
, pp. 155-176
-
-
Ramsey, J.B.1
Yuan, H.J.2
-
27
-
-
0024815393
-
Chaos in rainfall
-
Rodriguez-Iturbe I, De Power FB, Sharifi MB, Georgakakos KP. Chaos in rainfall. Water Resour Res 1989;25(7):1667-75.
-
(1989)
Water Resour Res
, vol.25
, Issue.7
, pp. 1667-1675
-
-
Rodriguez-Iturbe, I.1
De Power, F.B.2
Sharifi, M.B.3
Georgakakos, K.P.4
-
28
-
-
43949166788
-
A practical method for calculating largest Lyapunov exponents from small data sets
-
Rosenstein MT, Collins JJ, De Luca CJ. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 1993;65:117-34.
-
(1993)
Physica D
, vol.65
, pp. 117-134
-
-
Rosenstein, M.T.1
Collins, J.J.2
De Luca, C.J.3
-
29
-
-
0029663909
-
Nonlinear dynamics of the Great Salt Lake: dimension estimation
-
Sangoyomi T, Lall U, Abarbanel HDJ. Nonlinear dynamics of the Great Salt Lake: dimension estimation. Water Resour Res 1996;32(1):149-59.
-
(1996)
Water Resour Res
, vol.32
, Issue.1
, pp. 149-159
-
-
Sangoyomi, T.1
Lall, U.2
Abarbanel, H.D.J.3
-
30
-
-
0000097854
-
A simple noise reduction method for real data
-
Schreiber T, Grassberger P. A simple noise reduction method for real data. Phys Lett A 1991;160:411-8.
-
(1991)
Phys Lett A
, vol.160
, pp. 411-418
-
-
Schreiber, T.1
Grassberger, P.2
-
31
-
-
0001981585
-
Observing and predicting chaotic signals: Is 2% noise too much?
-
Kravtsov YuA, Kadtke JB, editors. Springer series in synergetics. Berlin, Germany: Springer
-
Schreiber T, Kantz H. Observing and predicting chaotic signals: Is 2% noise too much? In: Kravtsov YuA, Kadtke JB, editors. Predictability of complex dynamical systems. Springer series in synergetics. Berlin, Germany: Springer; 1996. p. 43-65.
-
(1996)
Predictability of complex dynamical systems
, pp. 43-65
-
-
Schreiber, T.1
Kantz, H.2
-
32
-
-
6144236430
-
Improved surrogate data for nonlinearity tests
-
Schreiber T, Schmitz A. Improved surrogate data for nonlinearity tests. Phys Rev Lett 1996;77:635-8.
-
(1996)
Phys Rev Lett
, vol.77
, pp. 635-638
-
-
Schreiber, T.1
Schmitz, A.2
-
33
-
-
0345792394
-
Surrogate time series
-
Schreiber T, Schmitz A. Surrogate time series. Physica D 2000;142:346-82.
-
(2000)
Physica D
, vol.142
, pp. 346-382
-
-
Schreiber, T.1
Schmitz, A.2
-
35
-
-
0035698893
-
Rainfall dynamics at different temporal scales: a chaotic perspective
-
Sivakumar B. Rainfall dynamics at different temporal scales: a chaotic perspective. Hydrol Earth Syst Sci 2001;5(4):645-51.
-
(2001)
Hydrol Earth Syst Sci
, vol.5
, Issue.4
, pp. 645-651
-
-
Sivakumar, B.1
-
36
-
-
0035248666
-
Evidence of chaos in the rainfall-runoff process
-
Sivakumar B, Berndtsson R, Olsson J, Jinn K. Evidence of chaos in the rainfall- runoff process. Hydrol Sci J 2001;46(1):131-45.
-
(2001)
Hydrol Sci J
, vol.46
, Issue.1
, pp. 131-145
-
-
Sivakumar, B.1
Berndtsson, R.2
Olsson, J.3
Jinn, K.4
-
38
-
-
0032999119
-
Singapore rainfall behavior: chaotic?
-
Sivakumar B, Liong SY, Liaw CY, Phoon KK. Singapore rainfall behavior: chaotic? J Hydrol Eng 1999;4(1):38-48.
-
(1999)
J Hydrol Eng
, vol.4
, Issue.1
, pp. 38-48
-
-
Sivakumar, B.1
Liong, S.Y.2
Liaw, C.Y.3
Phoon, K.K.4
-
39
-
-
0033536168
-
A systematic approach to noise reduction in chaotic hydrological time series
-
Sivakumar B, Phoon KK, Liong SY, Liaw CY. A systematic approach to noise reduction in chaotic hydrological time series. J Hydrol 1999;219(3/4):103-35.
-
(1999)
J Hydrol
, vol.219
, Issue.3-4
, pp. 103-135
-
-
Sivakumar, B.1
Phoon, K.K.2
Liong, S.Y.3
Liaw, C.Y.4
-
40
-
-
0035144661
-
A chaotic approach to rainfall disaggregation
-
Sivakumar B, Sorooshian S, Gupta HV, Gao X. A chaotic approach to rainfall disaggregation. Water Resour Res 2001;37(1):61-72.
-
(2001)
Water Resour Res.
, vol.37
, Issue.1
, pp. 61-72
-
-
Sivakumar, B.1
Sorooshian, S.2
Gupta, H.V.3
Gao, X.4
-
41
-
-
0000201862
-
Intrinsic limits on dimension calculations
-
Smith LA. Intrinsic limits on dimension calculations. Phys Lett A 1988;133(6):283-8.
-
(1988)
Phys Lett A
, vol.133
, Issue.6
, pp. 283-288
-
-
Smith, L.A.1
-
42
-
-
0000943616
-
Deterministic chaos in runoff series
-
Stehlik J. Deterministic chaos in runoff series. J Hydraul Hydromech 1999;47(4):271-87.
-
(1999)
J Hydraul Hydromech
, vol.47
, Issue.4
, pp. 271-287
-
-
Stehlik, J.1
-
44
-
-
0000779360
-
Detecting strange attractors in turbulence
-
Rand DA, Young LS, editors. Berlin, Germany: Springer-Verlag
-
Takens F. Detecting strange attractors in turbulence. In: Rand DA, Young LS, editors. Lectures notes in mathematics, vol. 898. Berlin, Germany: Springer-Verlag; 1981. p. 366-81.
-
(1981)
Lectures notes in mathematics
, vol.898
, pp. 366-381
-
-
Takens, F.1
-
45
-
-
44049111332
-
Testing for nonlinearity in time series: the method of surrogate data
-
Theiler J, Eubank S, Longtin A, Galdikian B, Farmer JD. Testing for nonlinearity in time series: the method of surrogate data. Physica D 1992;58:77-94.
-
(1992)
Physica D
, vol.58
, pp. 77-94
-
-
Theiler, J.1
Eubank, S.2
Longtin, A.3
Galdikian, B.4
Farmer, J.D.5
-
46
-
-
0024218570
-
The weather attractor over very short timescales
-
Tsonis AA, Elsner JB. The weather attractor over very short timescales. Nature 1988;333:545-7.
-
(1988)
Nature
, vol.333
, pp. 545-547
-
-
Tsonis, A.A.1
Elsner, J.B.2
-
47
-
-
3543023273
-
Biases of correlation dimension estimates of streamflow data in the Canadian prairies
-
Wang Q, Gan TY. Biases of correlation dimension estimates of streamflow data in the Canadian prairies. Water Resour Res 1998;34(9):2329-39.
-
(1998)
Water Resour Res
, vol.34
, Issue.9
, pp. 2329-2339
-
-
Wang, Q.1
Gan, T.Y.2
|