메뉴 건너뛰기




Volumn 105, Issue 3, 2010, Pages 257-267

Statistical properties of QTL linkage mapping in biparental genetic populations

Author keywords

confidence interval; false discovery rate; inclusive composite interval mapping; population size; statistical power

Indexed keywords

CHROMOSOME; CONFIDENCE INTERVAL; DATA SET; GENE FLOW; GENETIC ANALYSIS; GENETIC MARKER; MAPPING METHOD; NUMERICAL MODEL; PHENOTYPE; POPULATION DENSITY; POPULATION SIZE; QUANTITATIVE ANALYSIS;

EID: 77955927186     PISSN: 0018067X     EISSN: 13652540     Source Type: Journal    
DOI: 10.1038/hdy.2010.56     Document Type: Article
Times cited : (100)

References (19)
  • 1
    • 0002348364 scopus 로고
    • The power and deceit of QTL experiments: Lessons from comparative QTL studies
    • American Seed Trade Association:Washington, DC
    • Beavis WD (1994). The power and deceit of QTL experiments: lessons from comparative QTL studies. In: Proceedings of the Forty-Ninth Annual Corn & Sorghum Industry Research Conference. American Seed Trade Association: Washington, DC, pp 250-266.
    • (1994) Proceedings of the Forty-Ninth Annual Corn & Sorghum Industry Research Conference , pp. 250-266
    • Beavis, W.D.1
  • 2
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini Y, Hochberg Y (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B 57: 289-300.
    • (1995) J R Stat Soc Series B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 3
    • 54949119817 scopus 로고    scopus 로고
    • Extending the modified Bayesian information criterion (mBIC) to dense markers and multiple interval mapping
    • Bogdan M, Biecek P, Cheng R, Frommlet F, Ghosh JK, Doerge RW (2008). Extending the modified Bayesian information criterion (mBIC) to dense markers and multiple interval mapping. Biometrics 64: 1162-1169.
    • (2008) Biometrics , vol.64 , pp. 1162-1169
    • Bogdan, M.1    Biecek, P.2    Cheng, R.3    Frommlet, F.4    Ghosh, J.K.5    Doerge, R.W.6
  • 4
    • 28344440415 scopus 로고    scopus 로고
    • Biased estimators of quantitative trait locus heritability and location in interval mapping
    • Bogdan M, Doerge RW (2005). Biased estimators of quantitative trait locus heritability and location in interval mapping. Heredity 95: 476-484.
    • (2005) Heredity , vol.95 , pp. 476-484
    • Bogdan, M.1    Doerge, R.W.2
  • 6
    • 0027278088 scopus 로고
    • Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map
    • Darvasi A, Weinreb A, Minke V, Wellert JI, Soller M (1993). Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics 134: 943-951.
    • (1993) Genetics , vol.134 , pp. 943-951
    • Darvasi, A.1    Weinreb, A.2    Minke, V.3    Wellert, J.I.4    Soller, M.5
  • 7
    • 0032944437 scopus 로고    scopus 로고
    • Statistical methods for mapping quantitative trait loci from a dense set of markers
    • Dupuis J, Siegmund D (1999). Statistical methods for mapping quantitative trait loci from a dense set of markers. Genetics 151: 373-386.
    • (1999) Genetics , vol.151 , pp. 373-386
    • Dupuis, J.1    Siegmund, D.2
  • 8
    • 0024508964 scopus 로고
    • Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps
    • Lander ES, Botstein D (1989). Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185-199.
    • (1989) Genetics , vol.121 , pp. 185-199
    • Lander, E.S.1    Botstein, D.2
  • 9
    • 33846494048 scopus 로고    scopus 로고
    • A modified algorithm for the improvement of composite interval mapping
    • Li H, Ye G, Wang J (2007). A modified algorithm for the improvement of composite interval mapping. Genetics 175: 361-374.
    • (2007) Genetics , vol.175 , pp. 361-374
    • Li, H.1    Ye, G.2    Wang, J.3
  • 10
    • 37549026524 scopus 로고    scopus 로고
    • Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations
    • Li H, Ribaut J-M, Li Z, Wang J (2008). Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet 116: 243-260.
    • (2008) Theor Appl Genet , vol.116 , pp. 243-260
    • Li, H.1    Ribaut, J.-M.2    Li, Z.3    Wang, J.4
  • 11
    • 3142605275 scopus 로고    scopus 로고
    • A simulation study on the accuracy of position and effect estimates of linked QTL and their asymptotic standard deviations using multiple interval mapping in an F2 scheme
    • Mayer M, Liu Y, Freyer G (2004). A simulation study on the accuracy of position and effect estimates of linked QTL and their asymptotic standard deviations using multiple interval mapping in an F2 scheme. Genet Sel Evol 36: 455-479.
    • (2004) Genet Sel Evol , vol.36 , pp. 455-479
    • Mayer, M.1    Liu, Y.2    Freyer, G.3
  • 12
    • 0034048442 scopus 로고    scopus 로고
    • Optimal marker density for interval mapping in a backcross population
    • Piepho H-P (2000). Optimal marker density for interval mapping in a backcross population. Heredity 84: 437-440.
    • (2000) Heredity , vol.84 , pp. 437-440
    • Piepho, H.-P.1
  • 13
    • 0034817026 scopus 로고    scopus 로고
    • A statistical framework for quantitative trait mapping
    • Sen S, Churchill GA (2001). A statistical framework for quantitative trait mapping. Genetics 159: 371-387.
    • (2001) Genetics , vol.159 , pp. 371-387
    • Sen, S.1    Churchill, G.A.2
  • 14
    • 0030068965 scopus 로고    scopus 로고
    • Confidence intervals in QTL mapping by bootstrapping
    • Visscher PM, Thompson R, Haley CS (1996). Confidence intervals in QTL mapping by bootstrapping. Genetics 143: 1013-1020.
    • (1996) Genetics , vol.143 , pp. 1013-1020
    • Visscher, P.M.1    Thompson, R.2    Haley, C.S.3
  • 15
    • 77949310185 scopus 로고    scopus 로고
    • Inclusive composite interval mapping of quantitative trait genes
    • Wang J (2009). Inclusive composite interval mapping of quantitative trait genes. Acta Agronomica Sinica 35: 239-245.
    • (2009) Acta Agronomica Sinica , vol.35 , pp. 239-245
    • Wang, J.1
  • 16
    • 0001854898 scopus 로고    scopus 로고
    • On the mapping of QTL by regression of phenotype on markertype
    • Whittaker JC, Thompson R, Visscher PM (1996). On the mapping of QTL by regression of phenotype on markertype. Heredity 77: 23-32.
    • (1996) Heredity , vol.77 , pp. 23-32
    • Whittaker, J.C.1    Thompson, R.2    Visscher, P.M.3
  • 17
    • 0347361672 scopus 로고    scopus 로고
    • Theoretical basis of the Beavis effect
    • Xu S (2003). Theoretical basis of the Beavis effect. Genetics 165: 2259-2268.
    • (2003) Genetics , vol.165 , pp. 2259-2268
    • Xu, S.1
  • 18
    • 0028224156 scopus 로고
    • Precision mapping of quantitative trait loci
    • Zeng Z-B (1994). Precision mapping of quantitative trait loci. Genetics 136: 1457-1468.
    • (1994) Genetics , vol.136 , pp. 1457-1468
    • Zeng, Z.-B.1
  • 19
    • 58149327488 scopus 로고    scopus 로고
    • Interactions between markers can be caused by the dominance effect of QTL
    • Zhang L, Li H, Li Z, Wang J (2008). Interactions between markers can be caused by the dominance effect of QTL. Genetics 180: 1177-1190.
    • (2008) Genetics , vol.180 , pp. 1177-1190
    • Zhang, L.1    Li, H.2    Li, Z.3    Wang, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.