메뉴 건너뛰기




Volumn , Issue , 2010, Pages 158-165

A multiobjective immune clustering ensemble technique applied to unsupervised SAR image segmentation

Author keywords

Artificial immune system; Clustering ensemble; Multiobjective optimization; SAR image; Unsupervised image segmentation

Indexed keywords

ARTIFICIAL IMMUNE SYSTEM; CLUSTERING ENSEMBLE; CLUSTERING METHODS; DATA CLUSTERING; DATA SETS; HIGH-QUALITY COMPONENTS; IMAGE FEATURES; IMMUNE CLUSTERING; MULTI OBJECTIVE; MULTIOBJECTIVE CLUSTERING; MULTIPLE CLUSTERINGS; SAR IMAGE SEGMENTATION; SAR IMAGES; SEGMENTATION PERFORMANCE; SYNTHETIC APERTURE RADAR IMAGE SEGMENTATIONS; UNSUPERVISED APPROACHES; UNSUPERVISED IMAGE SEGMENTATION;

EID: 77955891214     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1816041.1816067     Document Type: Conference Paper
Times cited : (8)

References (31)
  • 1
    • 63049133403 scopus 로고    scopus 로고
    • Unsupervised pixel classification in satellite imagery using a new multiobjective symmetry based clustering approach
    • 1-6, Nov.
    • S. Saha, S. Bandyopadhyay. Unsupervised pixel classification in satellite imagery using a new multiobjective symmetry based clustering approach. TENCON 2008 - 2008 IEEE Region 10 Conference. 1-6, Nov. 2008.
    • (2008) TENCON 2008 - 2008 IEEE Region 10 Conference
    • Saha, S.1    Bandyopadhyay, S.2
  • 2
    • 0035294788 scopus 로고    scopus 로고
    • Segmentation of SAR images using mixture of gamma distribution
    • A. E. Zaart, D. Ziou, S. Wang, and Q. Jiang. Segmentation of SAR images using mixture of gamma distribution. Pattern Recognit., 35(3): 713-724, 2002.
    • (2002) Pattern Recognit. , vol.35 , Issue.3 , pp. 713-724
    • Zaart, A.E.1    Ziou, D.2    Wang, S.3    Jiang, Q.4
  • 3
    • 14644431755 scopus 로고    scopus 로고
    • Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering
    • Mar.
    • P. R. Kersten, J. S. Lee, and T. L. Ainsworth. Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering. IEEE Trans. Geosci. Remote Sens.. 43(3): 519-527, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.3 , pp. 519-527
    • Kersten, P.R.1    Lee, J.S.2    Ainsworth, T.L.3
  • 4
    • 14644412825 scopus 로고    scopus 로고
    • Unsupervised segmentation of synthetic aperture radar sea ice imagery using a novel Markov random field model
    • Mar.
    • H. Deng and D. A. Clausi. Unsupervised segmentation of synthetic aperture radar sea ice imagery using a novel Markov random field model. IEEE Trans. Geosci. Remote Sens.. 43(3): 528-538, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.3 , pp. 528-538
    • Deng, H.1    Clausi, D.A.2
  • 6
  • 7
    • 63149099143 scopus 로고    scopus 로고
    • Unsupervised pixel classification in satellite imagery using multiobjective fuzzy clustering combined with SVM classifier
    • Apr.
    • A. Mukhopadhyay, U. Maulik. Unsupervised Pixel Classification in Satellite Imagery Using Multiobjective Fuzzy Clustering Combined With SVM Classifier. IEEE Trans. Geosci. Remote Sens.. 47(4): 1132-1138, Apr. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.4 , pp. 1132-1138
    • Mukhopadhyay, A.1    Maulik, U.2
  • 8
    • 0001138328 scopus 로고
    • A K-means clustering algorithm
    • J. A. Hartigan and M. A. Wong. A K-means clustering algorithm. Appl. Stat.. 28: 100-108, 1979.
    • (1979) Appl. Stat. , vol.28 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 9
    • 47249106068 scopus 로고    scopus 로고
    • Image texture classification using a manifold-distance-based evolutionary clustering method
    • Jul
    • M. G. Gong, L. C. Jiao, L. F. Bo et al.. Image texture classification using a manifold-distance-based evolutionary clustering method. Optic. Engin.. 47(7): 077201, Jul 2008.
    • (2008) Optic. Engin. , vol.47 , Issue.7 , pp. 077201
    • Gong, M.G.1    Jiao, L.C.2    Bo, L.F.3
  • 10
    • 0032660692 scopus 로고    scopus 로고
    • Clustering with a genetically optimized approach
    • L. O. Hall, I. B. Ozyurt, and J. C. Bezdek. Clustering with a genetically optimized approach. IEEE Trans. Evol. Comput.. 3(2): 103-112, 1999.
    • (1999) IEEE Trans. Evol. Comput. , vol.3 , Issue.2 , pp. 103-112
    • Hall, L.O.1    Ozyurt, I.B.2    Bezdek, J.C.3
  • 11
    • 0033715579 scopus 로고    scopus 로고
    • Genetic algorithm-based clustering technique
    • U. Maulik and S. Bandyopadhyay. Genetic algorithm-based clustering technique. Pattern Recogn.. 33(9): 1455-1465, 2000.
    • (2000) Pattern Recogn. , vol.33 , Issue.9 , pp. 1455-1465
    • Maulik, U.1    Bandyopadhyay, S.2
  • 12
    • 33947227459 scopus 로고    scopus 로고
    • An evolutionary approach to multiobjective clustering
    • J. Handl and J. Knowles. An evolutionary approach to multiobjective clustering. IEEE Trans. Evol. Comput.. 11(1): 56-76, 2007.
    • (2007) IEEE Trans. Evol. Comput. , vol.11 , Issue.1 , pp. 56-76
    • Handl, J.1    Knowles, J.2
  • 13
    • 55749084335 scopus 로고    scopus 로고
    • Unsupervised texture image segmentation using multiobjective evolutionary clustering ensemble algorithm
    • X. X. Qian, X. R. Zhang, L. C. Jiao, and W. P. Ma. Unsupervised texture image segmentation using multiobjective evolutionary clustering ensemble algorithm. IEEE Cong. Evol. Comput.. 3561-3567, 2008.
    • (2008) IEEE Cong. Evol. Comput. , pp. 3561-3567
    • Qian, X.X.1    Zhang, X.R.2    Jiao, L.C.3    Ma, W.P.4
  • 15
    • 17444430405 scopus 로고    scopus 로고
    • Solving multiobjective optimization problems using an artificial immune system
    • Jun.
    • C. A. Coello Coello and C. C. Nareli. Solving multiobjective optimization problems using an artificial immune system. Genetic Progr.and Evol. Mach.. 6(2): 163-190, Jun. 2005.
    • (2005) Genetic Progr.and Evol. Mach. , vol.6 , Issue.2 , pp. 163-190
    • Coello Coello, C.A.1    Nareli, C.C.2
  • 16
    • 47749112044 scopus 로고    scopus 로고
    • Multi-objective immune algorithm with nondominated neighbor-based selection
    • M. G. Gong, L. C. Jiao, H. F. Du and L. F. Bo. Multi-objective immune algorithm with nondominated neighbor-based selection. Evol. Comput.. 16(2): 225-255, 2008.
    • (2008) Evol. Comput. , vol.16 , Issue.2 , pp. 225-255
    • Gong, M.G.1    Jiao, L.C.2    Du, H.F.3    Bo, L.F.4
  • 18
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - A knowledge reuse framework for combining multiple partitions
    • A. Strehl, J. Ghosh, C. Cardie. Cluster Ensembles - A Knowledge Reuse Framework for Combining Multiple Partitions. Journal of Machine Learning Research. 3: 583-617, 2002.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2    Cardie, C.3
  • 20
    • 21244465997 scopus 로고    scopus 로고
    • How do we evaluate artificial immune systems?
    • S. M. Garrett. How do we evaluate artificial immune systems? Evol. Comput.. 13(2): 145-178, 2005.
    • (2005) Evol. Comput. , vol.13 , Issue.2 , pp. 145-178
    • Garrett, S.M.1
  • 21
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Aug.
    • L. Breiman. Bagging predictors. Mach. Learn.. 24(2): 123-140, Aug. 1996.
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 23
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - A knowledge reuse framework for combining multiple partitions
    • Mar.
    • A. Strehl and J. Ghosh. Cluster ensembles - A knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res.. 3(3): 583-617, Mar. 2002.
    • (2002) J. Mach. Learn. Res. , vol.3 , Issue.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 25
    • 21244468777 scopus 로고    scopus 로고
    • Combining multiple clusterings using evidence accumulation
    • Jun.
    • A. L. N. Fred and A. K. Jain. Combining multiple clusterings using evidence accumulation. IEEE Trans. Pattern Anal. Mach. Intell.. 27(6): 835-850, Jun. 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.6 , pp. 835-850
    • Fred, A.L.N.1    Jain, A.K.2
  • 26
    • 10844279814 scopus 로고    scopus 로고
    • SOM ensemble-based image segmentation
    • Nov.
    • Y. Jiang and Z. H. Zhou. SOM ensemble-based image segmentation. Neural Process. Lett.. 20(3): 171-178, Nov. 2004.
    • (2004) Neural Process. Lett. , vol.20 , Issue.3 , pp. 171-178
    • Jiang, Y.1    Zhou, Z.H.2
  • 27
    • 0025539778 scopus 로고
    • Extraction of textural features in images: Statistical model and sensitivity
    • E. Rignot and R. Kwok. Extraction of textural features in images: statistical model and sensitivity. Proc. IGARSS. 1979-1982, 1990.
    • (1990) Proc. IGARSS , pp. 1979-1982
    • Rignot, E.1    Kwok, R.2
  • 28
    • 0033189101 scopus 로고    scopus 로고
    • A wavelet-based texture set applied to classification of multifrequency polarimetric SAR images
    • S. Fukuda and H. Hirosawa. A wavelet-based texture set applied to classification of multifrequency polarimetric SAR images. IEEE Trans. Geosci. Remote Sens.. 2282-2286, 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , pp. 2282-2286
    • Fukuda, S.1    Hirosawa, H.2
  • 29
    • 1242331304 scopus 로고    scopus 로고
    • Comparing cooccurrence probabilities and Markov random fields for texture analysis of SAR sea ice imagery
    • D. A. Clausi and B. Yue. Comparing cooccurrence probabilities and Markov random fields for texture analysis of SAR sea ice imagery. IEEE Trans. Geosci. Remote Sens.. 42(1): 215-228, 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.1 , pp. 215-228
    • Clausi, D.A.1    Yue, B.2
  • 30
    • 0043164490 scopus 로고    scopus 로고
    • An analysis of co-occurrence texture statistics as a function of grey level quantization
    • D. A. Clausi. An analysis of co-occurrence texture statistics as a function of grey level quantization. Can. J. Remote Sens.. 28(1): 45-62, 2002.
    • (2002) Can. J. Remote Sens. , vol.28 , Issue.1 , pp. 45-62
    • Clausi, D.A.1
  • 31
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multiobjective genetic algorithm: NSGA-II
    • K. Deb, A. Pratap, S. Agarwal. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput.. 6(2): 182-197, 2002.
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Pratap, A.2    Agarwal, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.