메뉴 건너뛰기




Volumn 97, Issue 3, 2010, Pages 585-601

A class of grouped brunk estimators and penalized spline estimators for monotone regression

Author keywords

B spline; Difference penalty; Equivalent kernel; Green's function; Monotone regression

Indexed keywords


EID: 77955878132     PISSN: 00063444     EISSN: 14643510     Source Type: Journal    
DOI: 10.1093/biomet/asq029     Document Type: Article
Times cited : (12)

References (36)
  • 2
    • 0001278729 scopus 로고
    • On the estimation of parameters restricted by inequalities
    • BRUNK, H. D. (1958). On the estimation of parameters restricted by inequalities. Ann. Math. Statist. 29, 437-454
    • (1958) Ann. Math. Statist. , vol.29 , pp. 437-454
    • Brunk, H.D.1
  • 7
    • 0000411204 scopus 로고
    • An approximation of partial sums of independent r.v.'s and the sample d.f
    • KOMĹoS, J.,MAJOR, P. & TUSŃaDY, G. (1975). An approximation of partial sums of independent r.v.'s and the sample d.f. Z. Wahr. verw. Geb. 32, 111-131
    • (1975) Z. Wahr. Verw. Geb. , vol.32 , pp. 111-131
    • Komĺos, J.1    Major, P.2    Tusńady, G.3
  • 8
    • 44849098150 scopus 로고    scopus 로고
    • On the asymptotics of penalized splines
    • LI, Y. & RUPPERT, D. (2008). On the asymptotics of penalized splines. Biometrika 95, 415-436
    • (2008) Biometrika , vol.95 , pp. 415-436
    • Y, L.I.1    Ruppert, D.2
  • 9
    • 0001354703 scopus 로고
    • Estimating a smoothing regression function
    • MAMMEN, E. (1991). Estimating a smoothing regression function. Ann. Statist. 19, 724-740
    • (1991) Ann. Statist. , vol.19 , pp. 724-740
    • Mammen, E.1
  • 10
    • 0033241923 scopus 로고    scopus 로고
    • Smoothing splines and shape restrictions
    • MAMMEN, E. & THOMAS-AGNAN, C. (1999). Smoothing splines and shape restrictions. Scand. J. Statist. 26, 239-252
    • (1999) Scand. J. Statist. , vol.26 , pp. 239-252
    • Mammen, E.1    Thomas-Agnan, C.2
  • 11
    • 77955900570 scopus 로고
    • Discussion of Barlow and van Zwet's paper in nonparametric techniques in statistical inference
    • Indiana University, Ed. M. Puri. Cambridge: Cambridge University Press
    • MARSHALL, A. (1970). Discussion of Barlow and van Zwet's paper in nonparametric techniques in statistical inference. In Proc. First Int. Symp. Nonparam. Techniques, Indiana University, Ed. M. Puri. Cambridge: Cambridge University Press.
    • (1970) Proc. First Int. Symp. Nonparam. Techniques
    • Marshall, A.1
  • 12
    • 0000971706 scopus 로고
    • A comparison of a spline estimate to its equivalent kernel estimate
    • MESSER, K. (1991). A comparison of a spline estimate to its equivalent kernel estimate. Ann. Statist. 19, 817-829
    • (1991) Ann. Statist. , vol.19 , pp. 817-829
    • Messer, K.1
  • 13
    • 77955903197 scopus 로고    scopus 로고
    • Inference using shape-restricted regression splines
    • MEYER, M. (2008). Inference using shape-restricted regression splines. Ann. Appl. Statist. 2, 1013-1033
    • (2008) Ann. Appl. Statist. , vol.2 , pp. 1013-1033
    • Meyer, M.1
  • 14
    • 0034237944 scopus 로고    scopus 로고
    • On degrees of freedom in shape restricted regression
    • MEYER, M. & WOODROOFE, M. (2000). On degrees of freedom in shape restricted regression. Ann. Statist. 28, 1083-1104
    • (2000) Ann. Statist. , vol.28 , pp. 1083-1104
    • Meyer, M.1    Woodroofe, M.2
  • 15
    • 0000290116 scopus 로고
    • Monotone nonparametric regression
    • MUKERJEE, H. (1988). Monotone nonparametric regression. Ann. Statist. 16, 741-750
    • (1988) Ann. Statist. , vol.16 , pp. 741-750
    • Mukerjee, H.1
  • 16
    • 21844509828 scopus 로고
    • Splines as local smoothers
    • NYCHKA, D. (1995). Splines as local smoothers. Ann. Statist. 23, 1175-1197
    • (1995) Ann. Statist. , vol.23 , pp. 1175-1197
    • Nychka, D.1
  • 17
    • 49349099972 scopus 로고    scopus 로고
    • Spiking problem in monotone regression: Penalized residual sum of squares
    • PAL, J. (2008). Spiking problem in monotone regression: penalized residual sum of squares. Statist. Prob. Lett. 78, 1548-1556
    • (2008) Statist. Prob. Lett. , vol.78 , pp. 1548-1556
    • Pal, J.1
  • 18
    • 33745322939 scopus 로고    scopus 로고
    • On the distance between cumulative sum diagram and its greatest convex minorant for unequally spaced design points
    • PAL, J. & WOODROOFE, M. (2006). On the distance between cumulative sum diagram and its greatest convex minorant for unequally spaced design points. Scand. J. Statist. 33, 279-291
    • (2006) Scand. J. Statist. , vol.33 , pp. 279-291
    • Pal, J.1    Woodroofe, M.2
  • 19
    • 38549113694 scopus 로고    scopus 로고
    • Large sample properties of shape restricted regression estimators with smoothness adjustments
    • PAL, J. & WOODROOFE, M. (2007). Large sample properties of shape restricted regression estimators with smoothness adjustments. Statist. Sinica 17, 1601-1616
    • (2007) Statist. Sinica , vol.17 , pp. 1601-1616
    • Pal, J.1    Woodroofe, M.2
  • 20
    • 0001305816 scopus 로고    scopus 로고
    • Estimating smooth monotone functions
    • RAMSAY, J. O. (1998a). Estimating smooth monotone functions. J. R. Statist. Soc. B 60, 365-375
    • (1998) J. R. Statist. Soc. B , vol.60 , pp. 365-375
    • Ramsay, J.O.1
  • 21
    • 84972507631 scopus 로고
    • Monotone regression splines in action (with discussion
    • RAMSAY, J. O. (1988b). Monotone regression splines in action (with discussion). Statist. Sci. 3, 425-461
    • (1988) Statist. Sci. , vol.3 , pp. 425-461
    • Ramsay, J.O.1
  • 22
    • 0000419899 scopus 로고
    • Smoothing splines: Regression, derivatives and deconvolution
    • RICE, J. & ROSENBLATT, M. (1983). Smoothing splines: regression, derivatives and deconvolution. Ann. Statist. 11, 141-156
    • (1983) Ann. Statist. , vol.11 , pp. 141-156
    • Rice, J.1    Rosenblatt, M.2
  • 23
    • 0004267646 scopus 로고
    • Princeton, NJ: Princeton University Press
    • ROCKAFELLAR, R. T. (1970). Convex Analysis. Princeton, NJ: Princeton University Press.
    • (1970) Convex Analysis
    • Rockafellar, R.T.1
  • 26
    • 0000997747 scopus 로고
    • Spline smoothing: The equivalent variable kernel method
    • SILVERMAN, B. W. (1984). Spline smoothing: the equivalent variable kernel method. Ann. Statist. 12, 898-916.
    • (1984) Ann. Statist. , vol.12 , pp. 898-916
    • Silverman, B.W.1
  • 27
    • 46449120095 scopus 로고    scopus 로고
    • Linear complementarity systems with singleton properties: Non-Zenoness
    • New York City, New York
    • SHEN, J. & PANG, J. S. (2007). Linear complementarity systems with singleton properties: non-Zenoness. In Proc. Am. Contr. Conf. New York City, New York, 2007, pp. 2769-2774
    • (2007) Proc. Am. Contr. Conf. , vol.2007 , pp. 2769-2774
    • Shen, J.1    Pang, J.S.2
  • 28
    • 0000439527 scopus 로고
    • Optimal rate of convergence for nonparametric regression
    • STONE, C. J. (1982). Optimal rate of convergence for nonparametric regression. Ann. Statist. 10, 1040-1053
    • (1982) Ann. Statist. , vol.10 , pp. 1040-1053
    • Stone, C.J.1
  • 29
    • 0001724504 scopus 로고
    • Asymptotic normality of nearest neighbor regression function estimates
    • STUTE, W. (1984). Asymptotic normality of nearest neighbor regression function estimates. Ann. Statist. 12, 917-926
    • (1984) Ann. Statist. , vol.12 , pp. 917-926
    • Stute, W.1
  • 31
    • 0002970892 scopus 로고
    • Smoothing noisy data under monotonicity constraints: Existence, characterization and convergence rates
    • UTRERAS, F. (1985). Smoothing noisy data under monotonicity constraints: existence, characterization and convergence rates. Numer. Math. 47, 611-625
    • (1985) Numer. Math. , vol.47 , pp. 611-625
    • Utreras, F.1
  • 32
    • 41949133109 scopus 로고    scopus 로고
    • Isotonic smoothing spline regression
    • WANG, X. & LI, F. (2008). Isotonic smoothing spline regression. J. Comp. Graph. Statist. 17, 21-37.
    • (2008) J. Comp. Graph. Statist. , vol.17 , pp. 21-37
    • Wang, X.1    F, L.I.2
  • 34
    • 0000067461 scopus 로고
    • A penalized maximum likelihood estimate of f (0+) when f is nonincreasing
    • WOODROOFE, M. B. & SUN, J. (1993). A penalized maximum likelihood estimate of f (0+) when f is nonincreasing. Statist. Sinica. 3, 501-515
    • (1993) Statist. Sinica. , vol.3 , pp. 501-515
    • Woodroofe, M.B.1    Sun, J.2
  • 35
    • 0000350091 scopus 로고
    • The asymptotic behavior of monotone regression estimates
    • WRIGHT, F. T. (1981). The asymptotic behavior of monotone regression estimates. Ann. Statist. 9, 443-448
    • (1981) Ann. Statist. , vol.9 , pp. 443-448
    • Wright, F.T.1
  • 36
    • 0010595737 scopus 로고
    • Isotonic, convex and related splines
    • WRIGHT, I. & WEGMAN, E. (1980). Isotonic, convex and related splines. Ann. Statist. 8, 1023-1035
    • (1980) Ann. Statist. , vol.8 , pp. 1023-1035
    • Wright, I.1    Wegman, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.