메뉴 건너뛰기




Volumn 97, Issue 3, 2010, Pages 741-755

Properties of nested sampling

Author keywords

Central limit theorem; Evidence; Importance sampling; Marginal likelihood; Markov chain Monte Carlo simulation; Nested sampling

Indexed keywords


EID: 77955861158     PISSN: 00063444     EISSN: 14643510     Source Type: Journal    
DOI: 10.1093/biomet/asq021     Document Type: Article
Times cited : (99)

References (33)
  • 1
    • 33644967739 scopus 로고    scopus 로고
    • Efficient Bayes factor estimation from the reversible jump output
    • BARTOLUCCI, F., SCACCIA, L. & MIRA, A. (2006). Efficient Bayes factor estimation from the reversible jump output. Biometrika 93, 41-52.
    • (2006) Biometrika , vol.93 , pp. 41-52
    • Bartolucci, F.1    Scaccia, L.2    Mira, A.3
  • 2
    • 2242491935 scopus 로고    scopus 로고
    • Computational and inferential difficulties with mixtures posterior distribution
    • CELEUX, G., HURN, M. & ROBERT, C. (2000). Computational and inferential difficulties with mixtures posterior distribution. J. Am. Statist. Assoc. 95, 957-979
    • (2000) J. Am. Statist. Assoc. , vol.95 , pp. 957-979
    • Celeux, G.1    Hurn, M.2    Robert, C.3
  • 3
    • 0031527297 scopus 로고    scopus 로고
    • On Monte Carlo methods for estimating ratios of normalizing constants
    • CHEN, M. & SHAO, Q. (1997). On Monte Carlo methods for estimating ratios of normalizing constants. Ann. Statist. 25, 1563-1594
    • (1997) Ann. Statist. , vol.25 , pp. 1563-1594
    • Chen, M.1    Shao, Q.2
  • 5
    • 0041974049 scopus 로고
    • Marginal likelihood from the Gibbs output
    • CHIB, S. (1995). Marginal likelihood from the Gibbs output. J. Am. Statist. Assoc. 90, 1313-1321
    • (1995) J. Am. Statist. Assoc. , vol.90 , pp. 1313-1321
    • Chib, S.1
  • 6
    • 0001244941 scopus 로고
    • Estimation of finite mixture distributions by Bayesian sampling
    • DIEBOLT, J. & ROBERT, C. (1994). Estimation of finite mixture distributions by Bayesian sampling. J. R. Statist. Soc. B 56, 363-375
    • (1994) J. R. Statist. Soc. B , vol.56 , pp. 363-375
    • Diebolt, J.1    Robert, C.2
  • 7
    • 72949112934 scopus 로고    scopus 로고
    • Discussion of Nested sampling for Bayesian computations by John Skilling
    • Ed. J. Bernardo, M. Bayarri, J. Berger, A. David, D. Heckerman, A. Smith and M. West, Oxford: Oxford University Press
    • EVANS, M. (2007). Discussion of Nested sampling for Bayesian computations by John Skilling. In Bayesian Statistics 8, Ed. J. Bernardo, M. Bayarri, J. Berger, A. David, D. Heckerman, A. Smith and M. West, pp. 491-524. Oxford: Oxford University Press.
    • (2007) Bayesian Statistics , vol.8 , pp. 491-524
    • Evans, M.1
  • 8
    • 33750369868 scopus 로고    scopus 로고
    • Estimating marginal likelihoods for mixture and Markov switching models using bridge sampling techniques
    • FRÜHWIRTH-SCHNATTER, S. (2004). Estimating marginal likelihoods for mixture and Markov switching models using bridge sampling techniques. Econometr. J. 7, 143-167
    • (2004) Econometr. J. , vol.7 , pp. 143-167
    • Frühwirth-Schnatter, S.1
  • 9
    • 0000539315 scopus 로고
    • Bayesian model choice: Asymptotics and exact calculations
    • GELFAND, A. & DEY, D. (1994). Bayesian model choice: asymptotics and exact calculations. J. R. Statist. Soc. B 56, 501-514
    • (1994) J. R. Statist. Soc. B , vol.56 , pp. 501-514
    • Gelfand, A.1    Dey, D.2
  • 11
    • 77956889087 scopus 로고
    • Reversible jump MCMC computation and Bayesian model determination
    • GREEN, P. (1995). Reversible jump MCMC computation and Bayesian model determination. Biometrika 82, 711-732
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.1
  • 12
    • 0442312140 scopus 로고    scopus 로고
    • MCMC methods for computing Bayes factors: A comparative review
    • HAN, C. & CARLIN, B. (2001). MCMC methods for computing Bayes factors: a comparative review. J. Am. Statist. Assoc. 96, 1122-1132
    • (2001) J. Am. Statist. Assoc. , vol.96 , pp. 1122-1132
    • Han, C.1    Carlin, B.2
  • 13
    • 78649424388 scopus 로고
    • Weighted average importance sampling and defensive mixture distributions
    • HESTERBERG, T. (1995). Weighted average importance sampling and defensive mixture distributions. Technometrics 37, 185-194
    • (1995) Technometrics , vol.37 , pp. 185-194
    • Hesterberg, T.1
  • 14
    • 22544479764 scopus 로고    scopus 로고
    • Markov Chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling
    • JASRA, A., HOLMES, C. & STEPHENS, D. (2005). Markov Chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. Statist. Sci. 20, 50-67.
    • (2005) Statist. Sci. , vol.20 , pp. 50-67
    • Jasra, A.1    Holmes, C.2    Stephens, D.3
  • 15
  • 17
    • 0001044972 scopus 로고
    • Finding the observed information matrix when using the em algorithm
    • LOUIS, T. (1982). Finding the observed information matrix when using the EM algorithm. J. R. Statist. Soc. B 44, 226-233
    • (1982) J. R. Statist. Soc. B , vol.44 , pp. 226-233
    • Louis, T.1
  • 20
    • 21444451325 scopus 로고    scopus 로고
    • Simulating ratios of normalizing constants via a simple identity: A theoretical exploration
    • MENG, X. & WONG, W. (1996). Simulating ratios of normalizing constants via a simple identity: a theoretical exploration. Statist. Sinica 6, 831-860
    • (1996) Statist. Sinica , vol.6 , pp. 831-860
    • Meng, X.1    Wong, W.2
  • 21
    • 33644772615 scopus 로고    scopus 로고
    • A nested sampling algorithm for cosmological model selection
    • MUKHERJEE, P., PARKINSON, D. & LIDDLE, A. (2006). A nested sampling algorithm for cosmological model selection. Astrophys. J. 638, L51-L54.
    • (2006) Astrophys. J. , vol.638
    • Mukherjee, P.1    Parkinson, D.2    Liddle, A.3
  • 23
    • 0000273048 scopus 로고    scopus 로고
    • Annealed importance sampling
    • NEAL, R. (2001). Annealed importance sampling. Statist. Comp. 11, 125-139
    • (2001) Statist. Comp. , vol.11 , pp. 125-139
    • Neal, R.1
  • 24
    • 1842607847 scopus 로고    scopus 로고
    • R Development Core Team, Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0. URL
    • R Development Core Team (2010). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0. URL: http://www.R-project.org.
    • (2010) R: A Language and Environment for Statistical Computing
  • 25
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with an unknown number of components (with discussion)
    • RICHARDSON, S. & GREEN, P. (1997). On Bayesian analysis of mixtures with an unknown number of components (with discussion). J. R. Statist. Soc. B 59, 731-792
    • (1997) J. R. Statist. Soc. B , vol.59 , pp. 731-792
    • Richardson, S.1    Green, P.2
  • 27
    • 0039425350 scopus 로고    scopus 로고
    • Convergence of slice sampler Markov chains
    • ROBERTS, G. & ROSENTHAL, J. (1999). Convergence of slice sampler Markov chains. J. R. Statist. Soc. B 61, 643-660
    • (1999) J. R. Statist. Soc. B , vol.61 , pp. 643-660
    • Roberts, G.1    Rosenthal, J.2
  • 28
    • 0001455583 scopus 로고
    • Parameter estimation for Markov modulated Poisson processes
    • RYD́EN, T. (1994). Parameter estimation for Markov modulated Poisson processes. Stochastic Models 10, 795-829.
    • (1994) Stochastic Models , vol.10 , pp. 795-829
    • Ryd́en, T.1
  • 29
    • 34547375807 scopus 로고    scopus 로고
    • Efficient Bayesian inference for multimodal problems in cosmology
    • SHAW, J., BRIDGES, M. & HOBSON, M. (2007). Efficient Bayesian inference for multimodal problems in cosmology. Mon. Not. R. Astron. Soc. 378, 1365-1370
    • (2007) Mon. Not. R. Astron. Soc. , vol.378 , pp. 1365-1370
    • Shaw, J.1    Bridges, M.2    Hobson, M.3
  • 30
    • 35148901361 scopus 로고    scopus 로고
    • Nested sampling for general Bayesian computation
    • SKILLING, J. (2006). Nested sampling for general Bayesian computation. Bayesian Anal. 1, 833-860
    • (2006) Bayesian Anal , vol.1 , pp. 833-860
    • Skilling, J.1
  • 31
    • 72949108545 scopus 로고    scopus 로고
    • Nested sampling's convergence
    • New York: AIP
    • SKILLING, J. (2009). Nested sampling's convergence. In AIP Proc. 1193, pp. 277-291 New York: AIP.
    • (2009) AIP Proc , vol.1193 , pp. 277-291
    • Skilling, J.1
  • 33
    • 58149402004 scopus 로고    scopus 로고
    • Bayesian strong gravitational-lens modelling on adaptive grids: Objective detection of mass substructure in galaxies
    • VEGETTI, S. & KOOPMANS, L. V. E. (2009). Bayesian strong gravitational-lens modelling on adaptive grids: objective detection of mass substructure in galaxies. Mon. Not. R. Astron. Soc. 392, 945-963
    • (2009) Mon. Not. R. Astron. Soc. , vol.392 , pp. 945-963
    • Vegetti, S.1    Koopmans, L.V.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.