메뉴 건너뛰기




Volumn 174, Issue 15, 2010, Pages 1254-1276

Practical performance models of algorithms in evolutionary program induction and other domains

Author keywords

Algorithm selection problem; Algorithm taxonomies; Evolution algorithms; Performance prediction; Program induction

Indexed keywords

ACCURATE PREDICTION; ALGORITHM SELECTION; APPROXIMATE MODEL; ARTIFICIAL NEURAL NETWORK; AUTOMATIC CONSTRUCTION; BIN PACKING PROBLEM; EVOLUTION ALGORITHMS; EVOLUTIONARY COMPUTATION TECHNIQUES; GENE EXPRESSION PROGRAMMING; HILL CLIMBING; INDUCTION ALGORITHMS; INDUCTION SYSTEM; OPTIMISATIONS; PARAMETERS SETTING; PERFORMANCE MODEL; PERFORMANCE PREDICTION; PRACTICAL MODEL; PROGRAM INDUCTION; SYMBOLIC REGRESSION; TRAINING ALGORITHMS;

EID: 77955849498     PISSN: 00043702     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artint.2010.07.005     Document Type: Article
Times cited : (24)

References (101)
  • 10
    • 0001348721 scopus 로고
    • A Markov chain framework for the simple genetic algorithm
    • T.E. Davis, and J.C. Principe A Markov chain framework for the simple genetic algorithm Evolutionary Computation 1 3 1993 269 288
    • (1993) Evolutionary Computation , vol.1 , Issue.3 , pp. 269-288
    • Davis, T.E.1    Principe, J.C.2
  • 11
    • 0028203106 scopus 로고
    • Convergence analysis of canonical genetic algorithm
    • G. Rudolph Convergence analysis of canonical genetic algorithm IEEE Transactions on Neural Networks 5 1 1994 96 101
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.1 , pp. 96-101
    • Rudolph, G.1
  • 13
    • 0035276208 scopus 로고    scopus 로고
    • Drift analysis and average time complexity of evolutionary algorithms
    • J. He, and X. Yao Drift analysis and average time complexity of evolutionary algorithms Artificial Intelligence 127 1 2001 57 85
    • (2001) Artificial Intelligence , vol.127 , Issue.1 , pp. 57-85
    • He, J.1    Yao, X.2
  • 14
    • 0010847702 scopus 로고    scopus 로고
    • Exact schema theory for genetic programming and variable-length genetic algorithms with one-point crossover
    • R. Poli Exact schema theory for genetic programming and variable-length genetic algorithms with one-point crossover Genetic Programming and Evolvable Machines 2 2 2001 123 163
    • (2001) Genetic Programming and Evolvable Machines , vol.2 , Issue.2 , pp. 123-163
    • Poli, R.1
  • 16
    • 0037381842 scopus 로고    scopus 로고
    • Towards an analytic framework for analysing the computation time of evolutionary algorithms
    • J. He, and X. Yao Towards an analytic framework for analysing the computation time of evolutionary algorithms Artificial Intelligence 145 1-2 2003 59 97
    • (2003) Artificial Intelligence , vol.145 , Issue.12 , pp. 59-97
    • He, J.1    Yao, X.2
  • 17
    • 0042378952 scopus 로고    scopus 로고
    • General schema theory for genetic programming with subtree-swapping crossover: Part II
    • R. Poli, and N.F. McPhee General schema theory for genetic programming with subtree-swapping crossover: Part II Evolutionary Computation 11 2 2003 169 206
    • (2003) Evolutionary Computation , vol.11 , Issue.2 , pp. 169-206
    • Poli, R.1    McPhee, N.F.2
  • 18
    • 3543080914 scopus 로고    scopus 로고
    • Exact schema theory and Markov chain models for genetic programming and variable-length genetic algorithms with homologous crossover
    • R. Poli, N.F. McPhee, and J.E. Rowe Exact schema theory and Markov chain models for genetic programming and variable-length genetic algorithms with homologous crossover Genetic Programming and Evolvable Machines 5 1 2004 31 70
    • (2004) Genetic Programming and Evolvable Machines , vol.5 , Issue.1 , pp. 31-70
    • Poli, R.1    McPhee, N.F.2    Rowe, J.E.3
  • 20
    • 84946491745 scopus 로고    scopus 로고
    • Cartesian genetic programming
    • J.F. Miller, and P. Thomson Cartesian genetic programming R. Poli, W. Banzhaf, W.B. Langdon, J.F. Miller, P. Nordin, T.C. Fogarty, Proceedings of the Third European Conference on Genetic Programming (EuroGP-2000) LNCS vol. 1802 2000 Springer-Verlag Edinburgh 121 132
    • (2000) LNCS , vol.1802 , pp. 121-132
    • Miller, J.F.1    Thomson, P.2
  • 22
    • 0347499408 scopus 로고    scopus 로고
    • Gene expression programming: A new adaptive algorithm for solving problems
    • C. Ferreira Gene expression programming: A new adaptive algorithm for solving problems Complex Systems 13 2 2001 87 129
    • (2001) Complex Systems , vol.13 , Issue.2 , pp. 87-129
    • Ferreira, C.1
  • 23
    • 38149054952 scopus 로고    scopus 로고
    • The building block basis for genetic programming and variable-length genetic algorithms
    • R. Poli, and C.R. Stephens The building block basis for genetic programming and variable-length genetic algorithms International Journal of Computational Intelligence Research 1 2 2005 183 197 invited paper
    • (2005) International Journal of Computational Intelligence Research , vol.1 , Issue.2 , pp. 183-197
    • Poli, R.1    Stephens, C.R.2
  • 24
    • 38149061126 scopus 로고    scopus 로고
    • Editorial for the special issue on: Evolutionary algorithms - Bridging theory and practice
    • R. Poli, Y. Borenstein, and T. Jansen Editorial for the special issue on: Evolutionary algorithms - bridging theory and practice Evolutionary Computation 15 4 2007 iii-v
    • (2007) Evolutionary Computation , vol.15 , Issue.4
    • Poli, R.1    Borenstein, Y.2    Jansen, T.3
  • 25
    • 0003056605 scopus 로고
    • The algorithm selection problem
    • J.R. Rice The algorithm selection problem Advances in Computers 15 1976 65 118
    • (1976) Advances in Computers , vol.15 , pp. 65-118
    • Rice, J.R.1
  • 26
    • 68549128640 scopus 로고    scopus 로고
    • Empirical hardness models: Methodology and a case study on combinatorial auctions
    • K. Leyton-Brown, E. Nudelman, and Y. Shoham Empirical hardness models: Methodology and a case study on combinatorial auctions J. ACM 56 4 2009 1 52
    • (2009) J. ACM , vol.56 , Issue.4 , pp. 1-52
    • Leyton-Brown, K.1    Nudelman, E.2    Shoham, Y.3
  • 27
    • 35348987266 scopus 로고    scopus 로고
    • Empirical hardness models for combinatorial auctions
    • K. Leyton-Brown, E. Nudelman, and Y. Shoham Empirical hardness models for combinatorial auctions P. Cramton, Y. Shoham, R. Steinberg, Combinatorial Auctions 2006 MIT Press 479 504 (Ch. 19)
    • (2006) Combinatorial Auctions , pp. 479-504
    • Leyton-Brown, K.1    Nudelman, E.2    Shoham, Y.3
  • 28
    • 33750380289 scopus 로고    scopus 로고
    • Performance prediction and automated tuning of randomized and parametric algorithms
    • F. Hutter, Y. Hamadi, H.H. Hoos, and K. Leyton-Brown Performance prediction and automated tuning of randomized and parametric algorithms F. Benhamou, CP Lecture Notes in Computer Science vol. 4204 2006 Springer 213 228
    • (2006) Lecture Notes in Computer Science , vol.4204 , pp. 213-228
    • Hutter, F.1    Hamadi, Y.2    Hoos, H.H.3    Leyton-Brown, K.4
  • 32
    • 84957035400 scopus 로고    scopus 로고
    • Learning the empirical hardness of optimization problems: The case of combinatorial auctions
    • K. Leyton-Brown, E. Nudelman, and Y. Shoham Learning the empirical hardness of optimization problems: The case of combinatorial auctions P.V. Hentenryck, CP Lecture Notes in Computer Science vol. 2470 2002 Springer 556 572
    • (2002) Lecture Notes in Computer Science , vol.2470 , pp. 556-572
    • Leyton-Brown, K.1    Nudelman, E.2    Shoham, Y.3
  • 34
    • 38349031300 scopus 로고    scopus 로고
    • SATzilla-07: The design and analysis of an algorithm portfolio for SAT
    • L. Xu, F. Hutter, H.H. Hoos, K. Leyton-Brown, SATzilla-07: The design and analysis of an algorithm portfolio for SAT, in: Bessiere [101], pp. 712-727.
    • Bessiere [101] , pp. 712-727
    • Xu, L.1    Hutter, F.2    Hoos, H.H.3    Leyton-Brown, K.4
  • 38
    • 0000907353 scopus 로고
    • The roles of mutation, inbreeding, crossbreeding and selection in evolution
    • D.F. Jones (Ed.)
    • S.J. Wright, The roles of mutation, inbreeding, crossbreeding and selection in evolution, in: D.F. Jones (Ed.), Proceedings of the Sixth International Congress on Genetics, vol. 1, 1932, pp. 356-366.
    • (1932) Proceedings of the Sixth International Congress on Genetics , vol.1 , pp. 356-366
    • Wright, S.J.1
  • 39
    • 3543124342 scopus 로고
    • Genetic algorithm difficulty and the modality of the fitness landscapes
    • J. Horn, and D.E. Goldberg Genetic algorithm difficulty and the modality of the fitness landscapes L.D. Whitley, M.D. Vose, Foundations of Genetic Algorithms Workshop, vol. 3 1995 Morgan Kaufmann 243 269
    • (1995) Foundations of Genetic Algorithms Workshop, Vol. 3 , pp. 243-269
    • Horn, J.1    Goldberg, D.E.2
  • 40
    • 0025922918 scopus 로고
    • Coevolution to the edge of chaos: Coupled fitness landscapes, poised states, and coevolutionary avalanches
    • S.A. Kauffman, and S. Johnsen Coevolution to the edge of chaos: Coupled fitness landscapes, poised states, and coevolutionary avalanches Journal of Theoretical Biology 149 4 1991 467 505
    • (1991) Journal of Theoretical Biology , vol.149 , Issue.4 , pp. 467-505
    • Kauffman, S.A.1    Johnsen, S.2
  • 41
    • 0003155122 scopus 로고
    • Fitness distance correlation as a measure of problem difficulty for genetic algorithms
    • T. Jones, and S. Forrest Fitness distance correlation as a measure of problem difficulty for genetic algorithms L.J. Eshelman, ICGA 1995 Morgan Kaufmann 184 192
    • (1995) ICGA , pp. 184-192
    • Jones, T.1    Forrest, S.2
  • 42
    • 3543134080 scopus 로고    scopus 로고
    • Fitness distance correlation and problem difficulty for genetic programming
    • M. Clergue, P. Collard, M. Tomassini, and L. Vanneschi Fitness distance correlation and problem difficulty for genetic programming W.B. Langdon, E. Cantú-Paz, K.E. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M.A. Potter, A.C. Schultz, J.F. Miller, E.K. Burke, N. Jonoska, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2002) July 2002 Morgan Kaufmann New York, USA 724 732
    • (2002) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2002) , pp. 724-732
    • Clergue, M.1    Collard, P.2    Tomassini, M.3    Vanneschi, L.4
  • 43
    • 35248865223 scopus 로고    scopus 로고
    • Fitness distance correlation in structural mutation genetic programming
    • L. Vanneschi, M. Tomassini, P. Collard, and M. Clergue Fitness distance correlation in structural mutation genetic programming C. Ryan, T. Soule, M. Keijzer, E.P.K. Tsang, R. Poli, E. Costa, EuroGP Lecture Notes in Computer Science vol. 2610 2003 Springer 455 464
    • (2003) Lecture Notes in Computer Science , vol.2610 , pp. 455-464
    • Vanneschi, L.1    Tomassini, M.2    Collard, P.3    Clergue, M.4
  • 44
    • 35248897179 scopus 로고    scopus 로고
    • Difficulty of unimodal and multimodal landscapes in genetic programming
    • L. Vanneschi, M. Tomassini, M. Clergue, and P. Collard Difficulty of unimodal and multimodal landscapes in genetic programming E. Cantú-Paz, J.A. Foster, K. Deb, L. Davis, R. Roy, U.-M. O'Reilly, H.-G. Beyer, R.K. Standish, G. Kendall, S.W. Wilson, M. Harman, J. Wegener, D. Dasgupta, M.A. Potter, A.C. Schultz, K.A. Dowsland, N. Jonoska, J.F. Miller, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2003) Lecture Notes in Computer Science vol. 2723 July 2003 Springer Chicago, IL, USA 1788 1799
    • (2003) Lecture Notes in Computer Science , vol.2723 , pp. 1788-1799
    • Vanneschi, L.1    Tomassini, M.2    Clergue, M.3    Collard, P.4
  • 45
    • 21344438136 scopus 로고    scopus 로고
    • A study of fitness distance correlation as a difficulty measure in genetic programming
    • M. Tomassini, L. Vanneschi, P. Collard, and M. Clergue A study of fitness distance correlation as a difficulty measure in genetic programming Evolutionary Computation 13 2 2005 213 239
    • (2005) Evolutionary Computation , vol.13 , Issue.2 , pp. 213-239
    • Tomassini, M.1    Vanneschi, L.2    Collard, P.3    Clergue, M.4
  • 46
    • 21344450743 scopus 로고    scopus 로고
    • Fitness clouds and problem hardness in genetic programming
    • L. Vanneschi, M. Clergue, P. Collard, M. Tomassini, and S. Vérel Fitness clouds and problem hardness in genetic programming K. Deb, R. Poli, W. Banzhaf, H.-G. Beyer, E.K. Burke, P.J. Darwen, D. Dasgupta, D. Floreano, J.A. Foster, M. Harman, O. Holland, P.L. Lanzi, L. Spector, A. Tettamanzi, D. Thierens, A.M. Tyrrell, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2004) Lecture Notes in Computer Science vol. 3103 June 2004 Springer Seattle, WA, USA 690 701
    • (2004) Lecture Notes in Computer Science , vol.3103 , pp. 690-701
    • Vanneschi, L.1    Clergue, M.2    Collard, P.3    Tomassini, M.4    Vérel, S.5
  • 47
    • 33646128244 scopus 로고    scopus 로고
    • A survey of problem difficulty in genetic programming
    • L. Vanneschi, M. Tomassini, P. Collard, and M. Clergue A survey of problem difficulty in genetic programming S. Bandini, S. Manzoni, Advances in Artificial Intelligence: Proceedings of the Ninth Congress of the Italian Association for Artificial Intelligence (AI*IA-2005) Lecture Notes in Computer Science vol. 3673 September 2005 Springer Milan, Italy 66 77
    • (2005) Lecture Notes in Computer Science , vol.3673 , pp. 66-77
    • Vanneschi, L.1    Tomassini, M.2    Collard, P.3    Clergue, M.4
  • 48
    • 33745754467 scopus 로고    scopus 로고
    • Negative slope coefficient: A measure to characterize genetic programming fitness landscapes
    • L. Vanneschi, M. Tomassini, P. Collard, and S. Vérel Negative slope coefficient: A measure to characterize genetic programming fitness landscapes P. Collet, M. Tomassini, M. Ebner, S. Gustafson, A. Ekárt, EuroGP Lecture Notes in Computer Science vol. 3905 2006 Springer 178 189
    • (2006) Lecture Notes in Computer Science , vol.3905 , pp. 178-189
    • Vanneschi, L.1    Tomassini, M.2    Collard, P.3    Vérel, S.4
  • 49
    • 34548079004 scopus 로고    scopus 로고
    • Fitness-proportional negative slope coefficient as a hardness measure for genetic algorithms
    • R. Poli, L. Vanneschi, Fitness-proportional negative slope coefficient as a hardness measure for genetic algorithms, in: Lipson [98], pp. 1335-1342.
    • Lipson [98] , pp. 1335-1342
    • Poli, R.1    Vanneschi, L.2
  • 50
    • 0032082507 scopus 로고    scopus 로고
    • A rigorous complexity analysis of the (1+1) evolutionary algorithm for separable functions with Boolean inputs
    • S. Droste, T. Jansen, and I. Wegener A rigorous complexity analysis of the (1 + 1 ) evolutionary algorithm for separable functions with Boolean inputs Evolutionary Computation 6 2 1998 185 196
    • (1998) Evolutionary Computation , vol.6 , Issue.2 , pp. 185-196
    • Droste, S.1    Jansen, T.2    Wegener, I.3
  • 51
    • 0037029331 scopus 로고    scopus 로고
    • On the analysis of the (1+1) evolutionary algorithm
    • S. Droste, T. Jansen, and I. Wegener On the analysis of the (1 + 1 ) evolutionary algorithm Theoretical Computer Science 276 1-2 2002 51 81
    • (2002) Theoretical Computer Science , vol.276 , Issue.12 , pp. 51-81
    • Droste, S.1    Jansen, T.2    Wegener, I.3
  • 52
    • 84958776704 scopus 로고    scopus 로고
    • On the expected runtime and the success probability of evolutionary algorithms
    • I. Wegener On the expected runtime and the success probability of evolutionary algorithms U. Brandes, D. Wagner, WG Lecture Notes in Computer Science vol. 1928 2000 Springer 1 10
    • (2000) Lecture Notes in Computer Science , vol.1928 , pp. 1-10
    • Wegener, I.1
  • 53
    • 27644579712 scopus 로고    scopus 로고
    • On the choice of the offspring population size in evolutionary algorithms
    • T. Jansen, K.A.D. Jong, and I. Wegener On the choice of the offspring population size in evolutionary algorithms Evolutionary Computation 13 4 2005 413 440
    • (2005) Evolutionary Computation , vol.13 , Issue.4 , pp. 413-440
    • Jansen, T.1    Jong, K.A.D.2    Wegener, I.3
  • 54
    • 33646077908 scopus 로고    scopus 로고
    • Runtime analysis of the (mu + 1) ea on simple pseudo-boolean functions
    • C. Witt Runtime analysis of the (mu + 1) ea on simple pseudo-boolean functions Evolutionary Computation 14 1 2006 65 86
    • (2006) Evolutionary Computation , vol.14 , Issue.1 , pp. 65-86
    • Witt, C.1
  • 55
    • 0141957141 scopus 로고    scopus 로고
    • The analysis of evolutionary algorithms - A proof that crossover really can help
    • T. Jansen, and I. Wegener The analysis of evolutionary algorithms - a proof that crossover really can help Algorithmica 34 1 2002 47 66
    • (2002) Algorithmica , vol.34 , Issue.1 , pp. 47-66
    • Jansen, T.1    Wegener, I.2
  • 56
    • 22344431964 scopus 로고    scopus 로고
    • Real royal road functions - Where crossover provably is essential
    • T. Jansen, and I. Wegener Real royal road functions - where crossover provably is essential Discrete Applied Mathematics 149 1-3 2005 111 125
    • (2005) Discrete Applied Mathematics , vol.149 , Issue.13 , pp. 111-125
    • Jansen, T.1    Wegener, I.2
  • 57
    • 35248874381 scopus 로고    scopus 로고
    • Evolutionary algorithms and the maximum matching problem
    • O. Giel, and I. Wegener Evolutionary algorithms and the maximum matching problem H. Alt, M. Habib, STACS Lecture Notes in Computer Science vol. 2607 2003 Springer 415 426
    • (2003) Lecture Notes in Computer Science , vol.2607 , pp. 415-426
    • Giel, O.1    Wegener, I.2
  • 58
    • 34248139794 scopus 로고    scopus 로고
    • Randomized local search, evolutionary algorithms, and the minimum spanning tree problem
    • F. Neumann, and I. Wegener Randomized local search, evolutionary algorithms, and the minimum spanning tree problem Theoretical Computer Science 378 1 2007 32 40
    • (2007) Theoretical Computer Science , vol.378 , Issue.1 , pp. 32-40
    • Neumann, F.1    Wegener, I.2
  • 62
    • 34548078427 scopus 로고    scopus 로고
    • Evolutionary algorithms and matroid optimization problems
    • J. Reichel, M. Skutella, Evolutionary algorithms and matroid optimization problems, in: Lipson [98], pp. 947-954.
    • Lipson [98] , pp. 947-954
    • Reichel, J.1    Skutella, M.2
  • 64
  • 65
    • 84947941376 scopus 로고    scopus 로고
    • Practical implications of new results in conservation of optimizer performance
    • T.M. English Practical implications of new results in conservation of optimizer performance M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J.J.M. Guervós, H.-P. Schwefel, Proceedings of the Sixth International Conference on Parallel Problem Solving from Nature (PPSN VI) Lecture Notes in Computer Science vol. 1917 September 2000 Springer Paris, France 69 78
    • (2000) Lecture Notes in Computer Science , vol.1917 , pp. 69-78
    • English, T.M.1
  • 67
    • 0038625313 scopus 로고    scopus 로고
    • On classes of functions for which no free lunch results hold
    • C. Igel, and M. Toussaint On classes of functions for which no free lunch results hold Information Processing Letters 86 6 2003 317 321
    • (2003) Information Processing Letters , vol.86 , Issue.6 , pp. 317-321
    • Igel, C.1    Toussaint, M.2
  • 69
    • 67650694120 scopus 로고    scopus 로고
    • There is a free lunch for hyper-heuristics, genetic programming and computer scientists
    • R. Poli, and M. Graff There is a free lunch for hyper-heuristics, genetic programming and computer scientists L. Vanneschi, S. Gustafson, A. Moraglio, I.D. Falco, M. Ebner, EUROGP-2009 Lecture Notes in Computer Science vol. 5481 2009 Springer 195 207
    • (2009) Lecture Notes in Computer Science , vol.5481 , pp. 195-207
    • Poli, R.1    Graff, M.2
  • 70
    • 72749091465 scopus 로고    scopus 로고
    • Free lunches for neural network search
    • R. Poli, and M. Graff Free lunches for neural network search F. Rothlauf, GECCO 2009 ACM 1291 1298
    • (2009) GECCO , pp. 1291-1298
    • Poli, R.1    Graff, M.2
  • 73
    • 37149018418 scopus 로고    scopus 로고
    • Continuous optimisation theory made easy? Finite-element models of evolutionary strategies, genetic algorithms and particle swarm optimizers
    • R. Poli, W.B. Langdon, M. Clerc, and C.R. Stephens Continuous optimisation theory made easy? Finite-element models of evolutionary strategies, genetic algorithms and particle swarm optimizers C.R. Stephens, M. Toussaint, L.D. Whitley, P.F. Stadler, Foundations of Genetic Algorithms Workshop, vol. 9 Lecture Notes in Computer Science vol. 4436 2007 Springer Mexico City, Mexico 165 193
    • (2007) Lecture Notes in Computer Science , vol.4436 , pp. 165-193
    • Poli, R.1    Langdon, W.B.2    Clerc, M.3    Stephens, C.R.4
  • 75
    • 0002500486 scopus 로고
    • Sur les problèmes aux dérivées partielles et leur signification physique
    • J. Hadamard Sur les problèmes aux dérivées partielles et leur signification physique Princeton University Bulletin 1902 49 52
    • (1902) Princeton University Bulletin , pp. 49-52
    • Hadamard, J.1
  • 79
    • 56449098258 scopus 로고    scopus 로고
    • R. Poli TinyGP see Genetic and Evolutionary Computation Conference (GECCO-2004) competition at http://cswww.essex.ac.uk/staff/sml/gecco/TinyGP.html June 2004
    • (2004) TinyGP
    • Poli, R.1
  • 80
    • 85027501336 scopus 로고
    • Program search with a hierarchical variable length representation: Genetic programming, simulated annealing and hill climbing
    • U.-M. O'Reilly, and F. Oppacher Program search with a hierarchical variable length representation: Genetic programming, simulated annealing and hill climbing Y. Davidor, H.-P. Schwefel, R. Manner, Proceedings of the Third International Conference on Parallel Problem Solving from Nature (PPSN VI) Lecture Notes in Computer Science vol. 866 1994 Springer-Verlag Jerusalem 397 406
    • (1994) Lecture Notes in Computer Science , vol.866 , pp. 397-406
    • O'Reilly, U.-M.1    Oppacher, F.2
  • 81
    • 0037238922 scopus 로고    scopus 로고
    • Empirical evaluation of the improved Rprop learning algorithms
    • C. Igel, and M. Hüsken Empirical evaluation of the improved Rprop learning algorithms Neurocomputing 50 2003 105 123
    • (2003) Neurocomputing , vol.50 , pp. 105-123
    • Igel, C.1    Hüsken, M.2
  • 82
    • 49749086726 scopus 로고    scopus 로고
    • Cross-disciplinary perspectives on meta-learning for algorithm selection
    • K.A. Smith-Miles Cross-disciplinary perspectives on meta-learning for algorithm selection ACM Comput. Surv. 41 1 2008 1 25
    • (2008) ACM Comput. Surv. , vol.41 , Issue.1 , pp. 1-25
    • Smith-Miles, K.A.1
  • 85
    • 30344467971 scopus 로고    scopus 로고
    • Learning to select branching rules in the dpll procedure for satisfiability
    • M.G. Lagoudakis, and M.L. Littman Learning to select branching rules in the dpll procedure for satisfiability Electronic Notes in Discrete Mathematics 9 2001 344 359
    • (2001) Electronic Notes in Discrete Mathematics , vol.9 , pp. 344-359
    • Lagoudakis, M.G.1    Littman, M.L.2
  • 86
    • 0012302244 scopus 로고    scopus 로고
    • A Bayesian approach to tackling hard computational problems
    • E. Horvitz, Y. Ruan, C.P. Gomes, H.A. Kautz, B. Selman, and D.M. Chickering A Bayesian approach to tackling hard computational problems J.S. Breese, D. Koller, UAI 2001 Morgan Kaufmann 235 244
    • (2001) UAI , pp. 235-244
    • Horvitz, E.1    Ruan, Y.2    Gomes, C.P.3    Kautz, H.A.4    Selman, B.5    Chickering, D.M.6
  • 87
    • 0010007403 scopus 로고    scopus 로고
    • Algorithm selection using reinforcement learning
    • M.G. Lagoudakis, M.L. Littman, Algorithm selection using reinforcement learning, in: Langley [99], pp. 511-518.
    • Langley [99] , pp. 511-518
    • Lagoudakis, M.G.1    Littman, M.L.2
  • 88
    • 67650257712 scopus 로고    scopus 로고
    • Statistical models for automatic performance tuning
    • R. Vuduc, J. Demmel, and J. Bilmes Statistical models for automatic performance tuning V.N. Alexandrov, J. Dongarra, B.A. Juliano, R.S. Renner, C.J.K. Tan, International Conference on Computational Science, vol. 1 Lecture Notes in Computer Science vol. 2073 2001 Springer 117 126
    • (2001) Lecture Notes in Computer Science , vol.2073 , pp. 117-126
    • Vuduc, R.1    Demmel, J.2    Bilmes, J.3
  • 91
    • 0009973422 scopus 로고    scopus 로고
    • Learning to predict performance from formula modeling and training data
    • B. Singer, M.M. Veloso, Learning to predict performance from formula modeling and training data, in: Langley [99], pp. 887-894.
    • Langley [99] , pp. 887-894
    • Singer, B.1    Veloso, M.M.2
  • 92
    • 26944458114 scopus 로고    scopus 로고
    • Using CBR to select solution strategies in constraint programming
    • C. Gebruers, B. Hnich, D.G. Bridge, and E.C. Freuder Using CBR to select solution strategies in constraint programming H. Muñoz-Avila, F. Ricci, ICCBR Lecture Notes in Computer Science vol. 3620 2005 Springer 222 236
    • (2005) Lecture Notes in Computer Science , vol.3620 , pp. 222-236
    • Gebruers, C.1    Hnich, B.2    Bridge, D.G.3    Freuder, E.C.4
  • 93
    • 33845982488 scopus 로고    scopus 로고
    • Making choices using structure at the instance level within a case based reasoning framework
    • C. Gebruers, A. Guerri, B. Hnich, and M. Milano Making choices using structure at the instance level within a case based reasoning framework J.-C. Régin, M. Rueher, CPAIOR Lecture Notes in Computer Science vol. 3011 2004 Springer 380 386
    • (2004) Lecture Notes in Computer Science , vol.3011 , pp. 380-386
    • Gebruers, C.1    Guerri, A.2    Hnich, B.3    Milano, M.4
  • 94
    • 35048902829 scopus 로고    scopus 로고
    • Machine learning for portfolio selection using structure at the instance level
    • C. Gebruers, A. Guerri, Machine learning for portfolio selection using structure at the instance level, in: Wallace [100], p. 794.
    • Wallace [100] , pp. 794
    • Gebruers, C.1    Guerri, A.2
  • 95
    • 33745197794 scopus 로고    scopus 로고
    • Applying machine learning to low-knowledge control of optimization algorithms
    • T. Carchrae, and J.C. Beck Applying machine learning to low-knowledge control of optimization algorithms Computational Intelligence 21 4 2005 372 387
    • (2005) Computational Intelligence , vol.21 , Issue.4 , pp. 372-387
    • Carchrae, T.1    Beck, J.C.2
  • 97
    • 0014129195 scopus 로고
    • Hierarchical clustering schemes
    • S. Johnson Hierarchical clustering schemes Psychometrika 32 3 1967 241 254
    • (1967) Psychometrika , vol.32 , Issue.3 , pp. 241-254
    • Johnson, S.1
  • 100
    • 77955851688 scopus 로고    scopus 로고
    • Principles and Practice of Constraint Programming - CP 2004, 10th International Conference, CP 2004, Toronto, Canada, September 27-October 1, 2004, Proceedings
    • M. Wallace, Springer
    • M. Wallace, Principles and Practice of Constraint Programming - CP 2004, 10th International Conference, CP 2004, Toronto, Canada, September 27-October 1, 2004, Proceedings Lecture Notes in Computer Science vol. 3258 2004 Springer
    • (2004) Lecture Notes in Computer Science , vol.3258
  • 101
    • 77955850492 scopus 로고    scopus 로고
    • Principles and Practice of Constraint Programming - CP 2007, 13th International Conference, CP 2007, Providence, RI, USA, September 23-27, 2007, Proceedings
    • C. Bessiere, Springer
    • C. Bessiere, Principles and Practice of Constraint Programming - CP 2007, 13th International Conference, CP 2007, Providence, RI, USA, September 23-27, 2007, Proceedings Lecture Notes in Computer Science vol. 4741 2007 Springer
    • (2007) Lecture Notes in Computer Science , vol.4741


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.