-
1
-
-
0003594964
-
-
Cambridge University Press, Cambridge, England
-
A.S. Pikovsky, M.G. Rosenblum, and J. Kurths, Synchronization-A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, England, 2001).
-
(2001)
Synchronization-A Universal Concept in Nonlinear Sciences
-
-
Pikovsky, A.S.1
Rosenblum, M.G.2
Kurths, J.3
-
3
-
-
0001823870
-
-
CHAOEH 1054-1500 10.1063/1.165810
-
L. Glass, Chaos 1, 13 (1991); CHAOEH 1054-1500 10.1063/1.165810
-
(1991)
Chaos
, vol.1
, pp. 13
-
-
Glass, L.1
-
4
-
-
0036710729
-
-
CHAOEH 1054-1500 10.1063/1.1497836
-
R.A. Gray, Chaos 12, 941 (2002). CHAOEH 1054-1500 10.1063/1.1497836
-
(2002)
Chaos
, vol.12
, pp. 941
-
-
Gray, R.A.1
-
6
-
-
70349628447
-
-
1932-6203 10.1371/journal.pone.0007057
-
A.E. Granada and H. Herzel, PLoS ONE 4, e7057 (2009). 1932-6203 10.1371/journal.pone.0007057
-
(2009)
PLoS ONE
, vol.4
, pp. 7057
-
-
Granada, A.E.1
Herzel, H.2
-
8
-
-
4444279481
-
-
JTBIAP 0022-5193 10.1016/j.jtbi.2004.04.043
-
D. Forger and D. Paydarfar, J. Theor. Biol. JTBIAP 0022-5193 230, 521 (2004). 10.1016/j.jtbi.2004.04.043
-
(2004)
J. Theor. Biol.
, vol.230
, pp. 521
-
-
Forger, D.1
Paydarfar, D.2
-
9
-
-
27144549847
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.95.108303
-
D. Lebiedz, Phys. Rev. Lett. 95, 108303 (2005). PRLTAO 0031-9007 10.1103/PhysRevLett.95.108303
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 108303
-
-
Lebiedz, D.1
-
10
-
-
54749094022
-
-
CHAOEH 1054-1500 10.1063/1.2964200
-
V. Gintautas and A.W. Hübler, Chaos 18, 033118 (2008). CHAOEH 1054-1500 10.1063/1.2964200
-
(2008)
Chaos
, vol.18
, pp. 033118
-
-
Gintautas, V.1
Hübler, A.W.2
-
12
-
-
84990947014
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.68.041915
-
J. Ritt, Phys. Rev. E PLEEE8 1063-651X 68, 041915 (2003). 10.1103/PhysRevE.68.041915
-
(2003)
Phys. Rev. e
, vol.68
, pp. 041915
-
-
Ritt, J.1
-
13
-
-
18744433111
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.91.018101
-
J. Feng and H.C. Tuckwell, Phys. Rev. Lett. 91, 018101 (2003). PRLTAO 0031-9007 10.1103/PhysRevLett.91.018101
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 018101
-
-
Feng, J.1
Tuckwell, H.C.2
-
15
-
-
0014108715
-
-
JTBIAP 0022-5193 10.1016/0022-5193(67)90051-3
-
A.T. Winfree, J. Theor. Biol. 16, 15 (1967). JTBIAP 0022-5193 10.1016/0022-5193(67)90051-3
-
(1967)
J. Theor. Biol.
, vol.16
, pp. 15
-
-
Winfree, A.T.1
-
18
-
-
0003814292
-
-
Here f are continuous and have continuous first derivatives, which belong to a function space with the norm □ defined by f(θ)|. For details, see, Dover, Mineola, New York
-
Here f are continuous and have continuous first derivatives, which belong to a function space with the norm defined by f (θ) | = max f (θ) |. For details, see I.M. Gelfand and S.V. Fomin, Calculus of Variations (Dover, Mineola, New York, 2000), Chap. 1.
-
(2000)
Calculus of Variations
-
-
Gelfand, I.M.1
Fomin, S.V.2
-
19
-
-
34347394200
-
-
SCIEAS 0036-8075 10.1126/science.1140858
-
I.Z. Kiss, Science 316, 1886 (2007). SCIEAS 0036-8075 10.1126/science.1140858
-
(2007)
Science
, vol.316
, pp. 1886
-
-
Kiss, I.Z.1
-
20
-
-
27744602428
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.94.248301
-
I.Z. Kiss, Y. Zhai, and J.L. Hudson, Phys. Rev. Lett. 94, 248301 (2005). PRLTAO 0031-9007 10.1103/PhysRevLett.94.248301
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 248301
-
-
Kiss, I.Z.1
Zhai, Y.2
Hudson, J.L.3
-
21
-
-
53349109499
-
-
ADCPAA 0065-2385 10.1002/9780470141519.ch2
-
M.T.M. Koper, Adv. Chem. Phys. 92, 161 (1996). ADCPAA 0065-2385 10.1002/9780470141519.ch2
-
(1996)
Adv. Chem. Phys.
, vol.92
, pp. 161
-
-
Koper, M.T.M.1
-
22
-
-
47049103581
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.101.024101
-
Y. Kawamura, Phys. Rev. Lett. 101, 024101 (2008). PRLTAO 0031-9007 10.1103/PhysRevLett.101.024101
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 024101
-
-
Kawamura, Y.1
|