메뉴 건너뛰기




Volumn , Issue , 2009, Pages 2071-2079

Sparse estimation using general likelihoods and non-factorial priors

Author keywords

[No Author keywords available]

Indexed keywords

COST-FUNCTION; DATA FITS; ESTIMATION PROBLEM; OVER-COMPLETE; PENALTY FUNCTION; PRIOR FUNCTIONS; PROPERTY; SPARSE BAYESIAN; SPARSE ESTIMATION; SPARSE REPRESENTATION;

EID: 77955685516     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (11)

References (24)
  • 2
    • 55349132734 scopus 로고    scopus 로고
    • A non-negative and sparse enough solution of an underdetermined linear system of equations is unique
    • Nov.
    • A. Bruckstein, M. Elad, and M. Zibulevsky, "A non-negative and sparse enough solution of an underdetermined linear system of equations is unique," IEEE Trans. Information Theory, vol. 54, no. 11, pp. 4813-4820, Nov. 2008.
    • (2008) IEEE Trans. Information Theory , vol.54 , Issue.11 , pp. 4813-4820
    • Bruckstein, A.1    Elad, M.2    Zibulevsky, M.3
  • 4
    • 33750012146 scopus 로고    scopus 로고
    • Gene selection in cancer classification using sparse logistic regression with Bayesian regularization
    • G. Cawley and N. Talbot, "Gene selection in cancer classification using sparse logistic regression with Bayesian regularization," Bioinformatics, vol. 22, no. 19, pp. 2348-2355, 2006.
    • (2006) Bioinformatics , vol.22 , Issue.19 , pp. 2348-2355
    • Cawley, G.1    Talbot, N.2
  • 6
    • 0142215333 scopus 로고    scopus 로고
    • Log-det heuristic for matrix rank minimization with applications to hankel and euclidean distance matrices
    • June
    • M. Fazel, H. Hindi, and S. Boyd, "Log-Det heuristic for matrix rank minimization with applications to hankel and Euclidean distance matrices," Proc. American Control Conf, vol. 3, pp. 2156-2162, June 2003.
    • (2003) Proc. American Control Conf , vol.3 , pp. 2156-2162
    • Fazel, M.1    Hindi, H.2    Boyd, S.3
  • 12
    • 0003430387 scopus 로고    scopus 로고
    • Monotone operators in banach space and nonlinear partial differential equations
    • AMS, Providence, RI
    • R. Showalter, "Monotone operators in Banach space and nonlinear partial differential equations," Mathematical Surveys and Monographs 49. AMS, Providence, RI, 1997.
    • (1997) Mathematical Surveys and Monographs , vol.49
    • Showalter, R.1
  • 14
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, "Regression shrinkage and selection via the Lasso," Journal of the Royal Statistical Society, vol. 58, no. 1, pp. 267-288, 1996.
    • (1996) Journal of the Royal Statistical Society , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 15
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • M. Tipping, "Sparse bayesian learning and the relevance vector machine," J. Machine learning Research, vol. 1, pp. 211-244, 2001.
    • (2001) J. Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.1
  • 17
    • 30844461481 scopus 로고    scopus 로고
    • Algorithms for simultaneous sparse approximation. Part II: Convex relaxation
    • April
    • J. Tropp, "Algorithms for simultaneous sparse approximation. Part II: Convex relaxation," Signal Processing, vol. 86, pp. 589-602, April 2006.
    • (2006) Signal Processing , vol.86 , pp. 589-602
    • Tropp, J.1
  • 22
    • 70349962981 scopus 로고    scopus 로고
    • Robust Bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG
    • Jan.
    • D. Wipf, J. Owen, H. Attias, K. Sekihara, and S. Nagarajan, "Robust Bayesian Estimation of the Location, Orientation, and Time Course of Multiple Correlated Neural Sources using MEG," Neuro Image, vol. 49, no. 1, pp. 641-655, Jan. 2010.
    • (2010) Neuro Image , vol.49 , Issue.1 , pp. 641-655
    • Wipf, D.1    Owen, J.2    Attias, H.3    Sekihara, K.4    Nagarajan, S.5
  • 23
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • M. Yuan and Y Lin, "Model selection and estimation in regression with grouped variables," J. R. Statist. Soc. B, vol. 68, pp. 49-67, 2006.
    • (2006) J. R. Statist. Soc. B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.