메뉴 건너뛰기




Volumn 20, Issue 8, 2010, Pages 1110-1121

Multi-label transfer learning with sparse representation

Author keywords

Image annotation; multi label learning; sparse representation; transfer learning; video concept detection

Indexed keywords

IMAGE ANNOTATION; MULTI-LABEL; SPARSE REPRESENTATION; TRANSFER LEARNING; VIDEO CONCEPT DETECTION;

EID: 77955652417     PISSN: 10518215     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCSVT.2010.2057015     Document Type: Article
Times cited : (29)

References (40)
  • 1
    • 68549126868 scopus 로고    scopus 로고
    • Tensor-based transductive learning for multi-modality video semantic concept detection
    • Aug
    • F. Wu, Y. Liu, and Y. Zhuang, "Tensor-based transductive learning for multi-modality video semantic concept detection," IEEE Trans. Multimedia, vol.11, no.5, pp. 868-878, Aug. 2009.
    • (2009) IEEE Trans. Multimedia , vol.11 , Issue.5 , pp. 868-878
    • Wu, F.1    Liu, Y.2    Zhuang, Y.3
  • 2
    • 71849086022 scopus 로고    scopus 로고
    • Multigraph-based query-independent learning for video search
    • Dec
    • Y. Liu, T. Mei, X. Wu, and X. Hua, "Multigraph-based query-independent learning for video search," IEEE Trans. Circuits Syst. Video Technol., vol.19, no.12, pp. 1841-1850, Dec. 2009.
    • (2009) IEEE Trans. Circuits Syst. Video Technol. , vol.19 , Issue.12 , pp. 1841-1850
    • Liu, Y.1    Mei, T.2    Wu, X.3    Hua, X.4
  • 3
    • 71849107714 scopus 로고    scopus 로고
    • Online reranking via ordinalinformative concepts for context fusion in concept detection and videosearch
    • Dec
    • Y.-H. Yang, W. H. Hsu, and H. H. Chen, "Online reranking via ordinalinformative concepts for context fusion in concept detection and videosearch," IEEE Trans. Circuits Syst. Video Technol., vol.19, no.12, pp.1880-1890, Dec. 2009.
    • (2009) IEEE Trans. Circuits Syst. Video Technol. , vol.19 , Issue.12 , pp. 1880-1890
    • Yang, Y.-H.1    Hsu, W.H.2    Chen, H.H.3
  • 7
    • 33750718803 scopus 로고    scopus 로고
    • Semi-supervised multi-label learning byconstrained non-negative matrix factorization
    • 18th Innovative Applicat. Artif. Intell. Conf.
    • Y. Liu, R. Jin, and L. Yang, "Semi-supervised multi-label learning byconstrained non-negative matrix factorization," in Proc. 21st Natl. Conf.Artif. Intell. 18th Innovative Applicat. Artif. Intell. Conf., vol.21. 2006,pp. 421-426.
    • (2006) Proc. 21st Natl. Conf.Artif. Intell , vol.21 , pp. 421-426
    • Liu, Y.1    Jin, R.2    Yang, L.3
  • 8
    • 67149122177 scopus 로고    scopus 로고
    • M3MIML: A maximum margin method formulti-instance multi-label learning
    • M. Zhang and Z. Zhou, "M3MIML: A maximum margin method formulti-instance multi-label learning," in Proc. 8th IEEE Int. Conf. DataMining, 2008, pp. 688-697.
    • (2008) Proc. 8th IEEE Int. Conf. DataMining , pp. 688-697
    • Zhang, M.1    Zhou, Z.2
  • 9
    • 60649094696 scopus 로고    scopus 로고
    • Graph-based semi-supervised learning with multiple labels
    • Z. Zha, T. Mei, J. Wang, Z. Wang, and X. Hua, "Graph-based semi-supervised learning with multiple labels," J. Vis. Commun. ImageRepresentat., vol 20, no.2, pp. 97-103, 2009.
    • (2009) J. Vis. Commun. ImageRepresentat. , vol.20 , Issue.2 , pp. 97-103
    • Zha, Z.1    Mei, T.2    Wang, J.3    Wang, Z.4    Hua, X.5
  • 13
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structurefrom multiple tasks and unlabeled data
    • Nov.
    • R. K. Ando and T. Zhang, "A framework for learning predictive structurefrom multiple tasks and unlabeled data," J. Mach. Learn. Res., vol.6,pp. 1817-1853, Nov. 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 14
    • 57749121315 scopus 로고    scopus 로고
    • Multi-label dimensionality reduction viadependence maximization
    • Y. Zhang and Z. H. Zhou, "Multi-label dimensionality reduction viadependence maximization," in Proc. 23rd AAAI Conf. Artif. Intell., 2008,pp. 1503-1505.
    • (2008) Proc. 23rd AAAI Conf. Artif. Intell. , pp. 1503-1505
    • Zhang, Y.1    Zhou, Z.H.2
  • 15
    • 77953179079 scopus 로고    scopus 로고
    • Linear dimensionality reduction for multi-label classification
    • S. Ji and J. Ye, "Linear dimensionality reduction for multi-label classification," in Proc. 21st IJCAI, 2009, pp. 1077-1082.
    • (2009) Proc. 21st IJCAI , pp. 1077-1082
    • Ji, S.1    Ye, J.2
  • 16
    • 65449189832 scopus 로고    scopus 로고
    • Extracting shared subspace for multi-label classification
    • S. Ji, L. Tang, S. Yu, and J. Ye, "Extracting shared subspace for multi-label classification," in Proc. 14 ACM SIGKDD Int. Conf. KDD, 2008,pp. 381-389.
    • (2008) Proc. 14 ACM SIGKDD Int. Conf. KDD , pp. 381-389
    • Ji, S.1    Tang, L.2    Yu, S.3    Ye, J.4
  • 17
    • 65449185036 scopus 로고    scopus 로고
    • Hypergraph spectral learning for multi-label classification
    • L. Sun, S. Ji, and J. Ye, "Hypergraph spectral learning for multi-label classification," in Proc. 14 ACM SIGKDD Int. Conf. KDD, 2008,pp. 668-676.
    • (2008) Proc. 14 ACM SIGKDD Int. Conf. KDD , pp. 668-676
    • Sun, L.1    Ji, S.2    Ye, J.3
  • 20
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, "Regression shrinkage and selection via the lasso," J. R.Statist. Soc. Ser. B, vol.58, no.1, pp. 267-288, 1996.
    • (1996) J. R.Statist. Soc. Ser. B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 21
    • 71149101160 scopus 로고    scopus 로고
    • A least squares formulation for a class ofgeneralized eigenvalue problems in machine learning
    • L. Sun, S. Ji, and J. Ye, "A least squares formulation for a class ofgeneralized eigenvalue problems in machine learning," in Proc. 26thICML, 2009, pp. 977-984.
    • (2009) Proc. 26thICML , pp. 977-984
    • Sun, L.1    Ji, S.2    Ye, J.3
  • 22
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via theelastic net
    • H. Zou and T. Hastie, "Regularization and variable selection via theelastic net," J. R. Statist. Soc. Ser. B, vol.67, no.2, pp. 301-320, 2005.
    • (2005) J. R. Statist. Soc. Ser. B , vol.67 , Issue.2 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 24
    • 49549117969 scopus 로고    scopus 로고
    • Learning with hypergraphs: Clustering, classification, and embedding
    • D. Zhou, J. Huang, and B. Schölkopf, "Learning with hypergraphs: Clustering, classification, and embedding," Adv. Neural Informat. Process.Syst., vol.19, pp. 169-176, 2007.
    • (2007) Adv. Neural Informat. Process.Syst. , vol.19 , pp. 169-176
    • Zhou, D.1    Huang, J.2    Schölkopf, B.3
  • 25
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionalityreduction and data representation
    • M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionalityreduction and data representation," Neural Computat., vol.15, no.6,pp. 1373-1396, 2003.
    • (2003) Neural Computat. , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 32
    • 0000988974 scopus 로고
    • A generalized solution of the orthogonal procrustes problem
    • P. H. Schonemann, "A generalized solution of the orthogonal procrustes problem," Psychometrika, vol.31, no.1, pp. 1-10, 1966.
    • (1966) Psychometrika , vol.31 , Issue.1 , pp. 1-10
    • Schonemann, P.H.1
  • 33
    • 0004236492 scopus 로고    scopus 로고
    • 3rd ed. Baltimore, MD: Johns Hopkins Univ. Press
    • G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed. Baltimore, MD: Johns Hopkins Univ. Press, 1996.
    • (1996) Matrix Computations
    • Golub, G.H.1    Loan, C.F.V.2
  • 38
    • 77955594132 scopus 로고    scopus 로고
    • ImageCLEF: Image Retrieval in CLEF [Online]
    • ImageCLEF: Image Retrieval in CLEF [Online]. Available: http://imageclef.org/2009
  • 39
    • 0033284915 scopus 로고    scopus 로고
    • Object recognition from local scale-invariant features
    • D. G. Lowe, "Object recognition from local scale-invariant features," in Proc. Inter. Conf. Comput. Vis. vol 2. 1999, pp. 1150-1157.
    • (1999) Proc. Inter. Conf. Comput. Vis. , vol.2 , pp. 1150-1157
    • Lowe, D.G.1
  • 40
    • 1942485278 scopus 로고    scopus 로고
    • Using the triangle inequality to accelerate k-means
    • C. Elkan, "Using the triangle inequality to accelerate k-means," in Proc. 20th Int. Conf. Mach. Learn., 2003, pp. 111-117.
    • (2003) Proc. 20th Int. Conf. Mach. Learn , pp. 111-117
    • Elkan, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.