메뉴 건너뛰기




Volumn 81, Issue 19, 2010, Pages

Continuum mechanics for quantum many-body systems: Linear response regime

Author keywords

[No Author keywords available]

Indexed keywords


EID: 77955583814     PISSN: 10980121     EISSN: 1550235X     Source Type: Journal    
DOI: 10.1103/PhysRevB.81.195106     Document Type: Article
Times cited : (42)

References (52)
  • 2
    • 33745778149 scopus 로고    scopus 로고
    • Lecture Notes in Physics Vol. edited by M. A. L. Marques, C. A. Ullrich, F. Nogueira, A. Rubio, K. Burke, and E. K. U. Gross (Springer, Berlin, 10.1007/b11767107
    • Time-Dependent Density Functional Theory, Lecture Notes in Physics Vol. 706, edited by, M. A. L. Marques,,, C. A. Ullrich,,, F. Nogueira,,, A. Rubio,,, K. Burke,, and, E. K. U. Gross, (Springer, Berlin, 2006). 10.1007/b11767107
    • (2006) Time-Dependent Density Functional Theory , vol.706
  • 3
    • 0003833820 scopus 로고    scopus 로고
    • in Topics in Current Chemistry Vol. edited by R. F. Nalewajski (Springer-Verlag, Berlin, 10.1007/BFb0016643
    • E. K. U. Gross, J. F. Dobson, and M. Petersilka, in Density Functional Theory, Topics in Current Chemistry Vol. 181, edited by, R. F. Nalewajski, (Springer-Verlag, Berlin, 1996). 10.1007/BFb0016643
    • (1996) Density Functional Theory , vol.181
    • Gross, E.K.U.1    Dobson, J.F.2    Petersilka, M.3
  • 6
    • 0003454331 scopus 로고    scopus 로고
    • in edited by J. F. Dobson, G. Vignale, and M. P. Das (Plenum, New York
    • J. F. Dobson and B. P. Dinte, in Density Functional Theory, edited by, J. F. Dobson,,, G. Vignale,, and, M. P. Das, (Plenum, New York, 1998).
    • (1998) Density Functional Theory
    • Dobson, J.F.1    Dinte, B.P.2
  • 8
    • 34250913931 scopus 로고
    • 10.1007/BF01400372
    • E. Madelung, Z. Phys. 40, 322 (1927). 10.1007/BF01400372
    • (1927) Z. Phys. , vol.40 , pp. 322
    • Madelung, E.1
  • 9
    • 0346449913 scopus 로고
    • 10.1007/BF01344553
    • F. Bloch, Z. Phys. 81, 363 (1933). 10.1007/BF01344553
    • (1933) Z. Phys. , vol.81 , pp. 363
    • Bloch, F.1
  • 10
    • 3843145902 scopus 로고
    • 10.1016/0370-1573(82)90134-X
    • S. K. Ghosh and B. M. Deb, Phys. Rep. 92, 1 (1982). 10.1016/0370-1573(82) 90134-X
    • (1982) Phys. Rep. , vol.92 , pp. 1
    • Ghosh, S.K.1    Deb, B.M.2
  • 11
  • 12
    • 3342912498 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.82.3863
    • R. van Leeuwen, Phys. Rev. Lett. 82, 3863 (1999). 10.1103/PhysRevLett.82. 3863
    • (1999) Phys. Rev. Lett. , vol.82 , pp. 3863
    • Van Leeuwen, R.1
  • 13
    • 0000600511 scopus 로고
    • 10.1103/PhysRevB.49.8147
    • E. Zaremba and H. C. Tso, Phys. Rev. B 49, 8147 (1994). 10.1103/PhysRevB.49.8147
    • (1994) Phys. Rev. B , vol.49 , pp. 8147
    • Zaremba, E.1    Tso, H.C.2
  • 14
    • 0001252666 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.60.7966
    • S. Conti and G. Vignale, Phys. Rev. B 60, 7966 (1999). 10.1103/PhysRevB.60.7966
    • (1999) Phys. Rev. B , vol.60 , pp. 7966
    • Conti, S.1    Vignale, G.2
  • 15
  • 18
    • 0037104222 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.66.075301
    • J. F. Dobson and H. M. Le, Phys. Rev. B 66, 075301 (2002). 10.1103/PhysRevB.66.075301
    • (2002) Phys. Rev. B , vol.66 , pp. 075301
    • Dobson, J.F.1    Le, H.M.2
  • 20
    • 28644451323 scopus 로고    scopus 로고
    • Quantum many-body dynamics in a Lagrangian frame: II. Geometric formulation of time-dependent density functional theory
    • DOI 10.1103/PhysRevB.71.165105, 165105
    • I. V. Tokatly, Phys. Rev. B 71, 165105 (2005). 10.1103/PhysRevB.71.165105 (Pubitemid 41749455)
    • (2005) Physical Review B - Condensed Matter and Materials Physics , vol.71 , Issue.16 , pp. 1-17
    • Tokatly, I.V.1
  • 21
    • 33847656086 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.75.125105
    • I. V. Tokatly, Phys. Rev. B 75, 125105 (2007). 10.1103/PhysRevB.75.125105
    • (2007) Phys. Rev. B , vol.75 , pp. 125105
    • Tokatly, I.V.1
  • 25
    • 19644400804 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.70.033612
    • Y. E. Kim and A. L. Zubarev, Phys. Rev. A 70, 033612 (2004). 10.1103/PhysRevA.70.033612
    • (2004) Phys. Rev. A , vol.70 , pp. 033612
    • Kim, Y.E.1    Zubarev, A.L.2
  • 28
    • 0343315862 scopus 로고
    • 10.1016/0003-4916(68)90248-0
    • R. D. Puff and N. S. Gillis, Ann. Phys. 46, 364 (1968). 10.1016/0003-4916(68)90248-0
    • (1968) Ann. Phys. , vol.46 , pp. 364
    • Puff, R.D.1    Gillis, N.S.2
  • 29
  • 30
    • 0036612535 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.65.224117
    • C. L. Rogers and A. M. Rappe, Phys. Rev. B 65, 224117 (2002). 10.1103/PhysRevB.65.224117
    • (2002) Phys. Rev. B , vol.65 , pp. 224117
    • Rogers, C.L.1    Rappe, A.M.2
  • 31
    • 77955564270 scopus 로고    scopus 로고
    • To be completely accurate, we point out that the Hamiltonian H̃̂ (t), which governs the time evolution of the quantum state | ψ̃ 〈(t) 〉 in the comoving reference frame, does not coincide with the instantaneously deformed hamiltonian Ĥ u [u]. The difference arises from the fact that the coordinate transformation to the comoving frame is time dependent, and this generates an additional vector potential (also a functional of u), which guarantees the vanishing of the current density in the comoving frame. Consistent with this, the Hamiltonian that appears in the definition of P̃ μν in Eq. should be H̃̂ (t), not Ĥ u [u]. Fortunately, the difference between HH̃̂ (t) and Ĥ u [u] becomes irrelevant in the high-frequency limit, and therefore does not contribute to the elastic approximation proposed in this paper.
    • To be completely accurate, we point out that the Hamiltonian H̃̂ (t), which governs the time evolution of the quantum state | ψ̃ 〈(t) 〉 in the comoving reference frame, does not coincide with the instantaneously deformed hamiltonian Ĥ u [u]. The difference arises from the fact that the coordinate transformation to the comoving frame is time dependent, and this generates an additional vector potential (also a functional of u), which guarantees the vanishing of the current density in the comoving frame. Consistent with this, the Hamiltonian that appears in the definition of P̃ μν in Eq. should be H̃̂ (t), not Ĥ u [u]. Fortunately, the difference between HH̃̂ (t) and Ĥ u [u] becomes irrelevant in the high-frequency limit, and therefore does not contribute to the elastic approximation proposed in this paper.
  • 32
    • 77955585161 scopus 로고    scopus 로고
    • Following the nomenclature of mechanics we call "virtual" a variation in the displacement field that occurs while time is held constant. It is called virtual rather than real because no actual variation can take place without the passage of time
    • Following the nomenclature of mechanics we call "virtual" a variation in the displacement field that occurs while time is held constant. It is called virtual rather than real because no actual variation can take place without the passage of time.
  • 33
    • 4043150438 scopus 로고
    • 10.1103/PhysRevLett.73.2244
    • J. F. Dobson, Phys. Rev. Lett. 73, 2244 (1994). 10.1103/PhysRevLett.73. 2244
    • (1994) Phys. Rev. Lett. , vol.73 , pp. 2244
    • Dobson, J.F.1
  • 34
    • 3343014339 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.77.2037
    • G. Vignale and W. Kohn, Phys. Rev. Lett. 77, 2037 (1996). 10.1103/PhysRevLett.77.2037
    • (1996) Phys. Rev. Lett. , vol.77 , pp. 2037
    • Vignale, G.1    Kohn, W.2
  • 36
    • 33749127220 scopus 로고    scopus 로고
    • Time-dependent deformation approximation
    • DOI 10.1007/3-540-35426-3-8, Time-Dependent Density Functional Theory
    • I. V. Tokatly, Lect. Notes Phys. 706, 123 (2006). 10.1007/3-540-35426-3-8 (Pubitemid 44468544)
    • (2006) Lecture Notes in Physics , vol.706 , pp. 123-136
    • Tokatly, I.V.1
  • 43
    • 33751341440 scopus 로고
    • see also, 10.1103/PhysRevB.33.2481for an application to electronic systems.
    • see also S. M. Girvin, A. H. MacDonald, and P. M. Platzman, Phys. Rev. B 33, 2481 (1986) 10.1103/PhysRevB.33.2481
    • (1986) Phys. Rev. B , vol.33 , pp. 2481
    • Girvin, S.M.1    MacDonald, A.H.2    Platzman, P.M.3
  • 44
    • 77955575669 scopus 로고    scopus 로고
    • Alternatively, we could set V0 =0 and include the q=0 singularity in the structure factor: ρ2 (q) = n2 δ (q) +n [S (q) -1 ]
    • Alternatively, we could set V 0 = 0 and include the q = 0 singularity in the structure factor: ρ 2 (q) = n 2 δ (q) + n [S (q) - 1].


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.