-
1
-
-
0035529353
-
-
10.1103/RevModPhys.73.33
-
W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Rev. Mod. Phys. 73, 33 (2001). 10.1103/RevModPhys.73.33
-
(2001)
Rev. Mod. Phys.
, vol.73
, pp. 33
-
-
Foulkes, W.M.C.1
Mitas, L.2
Needs, R.J.3
Rajagopal, G.4
-
2
-
-
33745778149
-
-
Lecture Notes in Physics Vol. edited by M. A. L. Marques, C. A. Ullrich, F. Nogueira, A. Rubio, K. Burke, and E. K. U. Gross (Springer, Berlin, 10.1007/b11767107
-
Time-Dependent Density Functional Theory, Lecture Notes in Physics Vol. 706, edited by, M. A. L. Marques,,, C. A. Ullrich,,, F. Nogueira,,, A. Rubio,,, K. Burke,, and, E. K. U. Gross, (Springer, Berlin, 2006). 10.1007/b11767107
-
(2006)
Time-Dependent Density Functional Theory
, vol.706
-
-
-
3
-
-
0003833820
-
-
in Topics in Current Chemistry Vol. edited by R. F. Nalewajski (Springer-Verlag, Berlin, 10.1007/BFb0016643
-
E. K. U. Gross, J. F. Dobson, and M. Petersilka, in Density Functional Theory, Topics in Current Chemistry Vol. 181, edited by, R. F. Nalewajski, (Springer-Verlag, Berlin, 1996). 10.1007/BFb0016643
-
(1996)
Density Functional Theory
, vol.181
-
-
Gross, E.K.U.1
Dobson, J.F.2
Petersilka, M.3
-
4
-
-
0001157659
-
-
in edited by D. P. Chong (World Scientific, Singapore
-
M. E. Casida, in Recent Advances in Density Functional Methods, edited by, D. P. Chong, (World Scientific, Singapore, 1995), p. 155.
-
(1995)
Recent Advances in Density Functional Methods
, pp. 155
-
-
Casida, M.E.1
-
5
-
-
1942503171
-
-
10.1063/1.1651060
-
N. T. Maitra, Fan Zhang, R. J. Cave, and K. Burke, J. Chem. Phys. 120, 5932 (2004). 10.1063/1.1651060
-
(2004)
J. Chem. Phys.
, vol.120
, pp. 5932
-
-
Maitra, N.T.1
Zhang, F.2
Cave, R.J.3
Burke, K.4
-
6
-
-
0003454331
-
-
in edited by J. F. Dobson, G. Vignale, and M. P. Das (Plenum, New York
-
J. F. Dobson and B. P. Dinte, in Density Functional Theory, edited by, J. F. Dobson,,, G. Vignale,, and, M. P. Das, (Plenum, New York, 1998).
-
(1998)
Density Functional Theory
-
-
Dobson, J.F.1
Dinte, B.P.2
-
8
-
-
34250913931
-
-
10.1007/BF01400372
-
E. Madelung, Z. Phys. 40, 322 (1927). 10.1007/BF01400372
-
(1927)
Z. Phys.
, vol.40
, pp. 322
-
-
Madelung, E.1
-
9
-
-
0346449913
-
-
10.1007/BF01344553
-
F. Bloch, Z. Phys. 81, 363 (1933). 10.1007/BF01344553
-
(1933)
Z. Phys.
, vol.81
, pp. 363
-
-
Bloch, F.1
-
10
-
-
3843145902
-
-
10.1016/0370-1573(82)90134-X
-
S. K. Ghosh and B. M. Deb, Phys. Rep. 92, 1 (1982). 10.1016/0370-1573(82) 90134-X
-
(1982)
Phys. Rep.
, vol.92
, pp. 1
-
-
Ghosh, S.K.1
Deb, B.M.2
-
12
-
-
3342912498
-
-
10.1103/PhysRevLett.82.3863
-
R. van Leeuwen, Phys. Rev. Lett. 82, 3863 (1999). 10.1103/PhysRevLett.82. 3863
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 3863
-
-
Van Leeuwen, R.1
-
13
-
-
0000600511
-
-
10.1103/PhysRevB.49.8147
-
E. Zaremba and H. C. Tso, Phys. Rev. B 49, 8147 (1994). 10.1103/PhysRevB.49.8147
-
(1994)
Phys. Rev. B
, vol.49
, pp. 8147
-
-
Zaremba, E.1
Tso, H.C.2
-
14
-
-
0001252666
-
-
10.1103/PhysRevB.60.7966
-
S. Conti and G. Vignale, Phys. Rev. B 60, 7966 (1999). 10.1103/PhysRevB.60.7966
-
(1999)
Phys. Rev. B
, vol.60
, pp. 7966
-
-
Conti, S.1
Vignale, G.2
-
18
-
-
0037104222
-
-
10.1103/PhysRevB.66.075301
-
J. F. Dobson and H. M. Le, Phys. Rev. B 66, 075301 (2002). 10.1103/PhysRevB.66.075301
-
(2002)
Phys. Rev. B
, vol.66
, pp. 075301
-
-
Dobson, J.F.1
Le, H.M.2
-
20
-
-
28644451323
-
Quantum many-body dynamics in a Lagrangian frame: II. Geometric formulation of time-dependent density functional theory
-
DOI 10.1103/PhysRevB.71.165105, 165105
-
I. V. Tokatly, Phys. Rev. B 71, 165105 (2005). 10.1103/PhysRevB.71.165105 (Pubitemid 41749455)
-
(2005)
Physical Review B - Condensed Matter and Materials Physics
, vol.71
, Issue.16
, pp. 1-17
-
-
Tokatly, I.V.1
-
21
-
-
33847656086
-
-
10.1103/PhysRevB.75.125105
-
I. V. Tokatly, Phys. Rev. B 75, 125105 (2007). 10.1103/PhysRevB.75.125105
-
(2007)
Phys. Rev. B
, vol.75
, pp. 125105
-
-
Tokatly, I.V.1
-
23
-
-
0000598719
-
-
10.1103/PhysRevLett.80.1857;
-
M. Brewczyk, C. W. Clark, M. Lewenstein, and K. Rzazewski, Phys. Rev. Lett. 80, 1857 (1998) 10.1103/PhysRevLett.80.1857
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 1857
-
-
Brewczyk, M.1
Clark, C.W.2
Lewenstein, M.3
Rzazewski, K.4
-
25
-
-
19644400804
-
-
10.1103/PhysRevA.70.033612
-
Y. E. Kim and A. L. Zubarev, Phys. Rev. A 70, 033612 (2004). 10.1103/PhysRevA.70.033612
-
(2004)
Phys. Rev. A
, vol.70
, pp. 033612
-
-
Kim, Y.E.1
Zubarev, A.L.2
-
26
-
-
68949127076
-
-
10.1103/PhysRevLett.103.086401
-
J. Tao, X. Gao, G. Vignale, and I. V. Tokatly, Phys. Rev. Lett. 103, 086401 (2009). 10.1103/PhysRevLett.103.086401
-
(2009)
Phys. Rev. Lett.
, vol.103
, pp. 086401
-
-
Tao, J.1
Gao, X.2
Vignale, G.3
Tokatly, I.V.4
-
27
-
-
0003831091
-
-
Pergamon Press, Reading, Massachussetts
-
L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon Press, Reading, Massachussetts, 1962), p. 83.
-
(1962)
The Classical Theory of Fields
, pp. 83
-
-
Landau, L.D.1
Lifshitz, E.M.2
-
28
-
-
0343315862
-
-
10.1016/0003-4916(68)90248-0
-
R. D. Puff and N. S. Gillis, Ann. Phys. 46, 364 (1968). 10.1016/0003-4916(68)90248-0
-
(1968)
Ann. Phys.
, vol.46
, pp. 364
-
-
Puff, R.D.1
Gillis, N.S.2
-
30
-
-
0036612535
-
-
10.1103/PhysRevB.65.224117
-
C. L. Rogers and A. M. Rappe, Phys. Rev. B 65, 224117 (2002). 10.1103/PhysRevB.65.224117
-
(2002)
Phys. Rev. B
, vol.65
, pp. 224117
-
-
Rogers, C.L.1
Rappe, A.M.2
-
31
-
-
77955564270
-
-
To be completely accurate, we point out that the Hamiltonian H̃̂ (t), which governs the time evolution of the quantum state | ψ̃ 〈(t) 〉 in the comoving reference frame, does not coincide with the instantaneously deformed hamiltonian Ĥ u [u]. The difference arises from the fact that the coordinate transformation to the comoving frame is time dependent, and this generates an additional vector potential (also a functional of u), which guarantees the vanishing of the current density in the comoving frame. Consistent with this, the Hamiltonian that appears in the definition of P̃ μν in Eq. should be H̃̂ (t), not Ĥ u [u]. Fortunately, the difference between HH̃̂ (t) and Ĥ u [u] becomes irrelevant in the high-frequency limit, and therefore does not contribute to the elastic approximation proposed in this paper.
-
To be completely accurate, we point out that the Hamiltonian H̃̂ (t), which governs the time evolution of the quantum state | ψ̃ 〈(t) 〉 in the comoving reference frame, does not coincide with the instantaneously deformed hamiltonian Ĥ u [u]. The difference arises from the fact that the coordinate transformation to the comoving frame is time dependent, and this generates an additional vector potential (also a functional of u), which guarantees the vanishing of the current density in the comoving frame. Consistent with this, the Hamiltonian that appears in the definition of P̃ μν in Eq. should be H̃̂ (t), not Ĥ u [u]. Fortunately, the difference between HH̃̂ (t) and Ĥ u [u] becomes irrelevant in the high-frequency limit, and therefore does not contribute to the elastic approximation proposed in this paper.
-
-
-
-
32
-
-
77955585161
-
-
Following the nomenclature of mechanics we call "virtual" a variation in the displacement field that occurs while time is held constant. It is called virtual rather than real because no actual variation can take place without the passage of time
-
Following the nomenclature of mechanics we call "virtual" a variation in the displacement field that occurs while time is held constant. It is called virtual rather than real because no actual variation can take place without the passage of time.
-
-
-
-
33
-
-
4043150438
-
-
10.1103/PhysRevLett.73.2244
-
J. F. Dobson, Phys. Rev. Lett. 73, 2244 (1994). 10.1103/PhysRevLett.73. 2244
-
(1994)
Phys. Rev. Lett.
, vol.73
, pp. 2244
-
-
Dobson, J.F.1
-
34
-
-
3343014339
-
-
10.1103/PhysRevLett.77.2037
-
G. Vignale and W. Kohn, Phys. Rev. Lett. 77, 2037 (1996). 10.1103/PhysRevLett.77.2037
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 2037
-
-
Vignale, G.1
Kohn, W.2
-
36
-
-
33749127220
-
Time-dependent deformation approximation
-
DOI 10.1007/3-540-35426-3-8, Time-Dependent Density Functional Theory
-
I. V. Tokatly, Lect. Notes Phys. 706, 123 (2006). 10.1007/3-540-35426-3-8 (Pubitemid 44468544)
-
(2006)
Lecture Notes in Physics
, vol.706
, pp. 123-136
-
-
Tokatly, I.V.1
-
38
-
-
56849128244
-
-
10.1103/PhysRevA.78.052513
-
J. P. Perdew, V. N. Staroverov, J. Tao, and G. E. Scuseria, Phys. Rev. A 78, 052513 (2008). 10.1103/PhysRevA.78.052513
-
(2008)
Phys. Rev. A
, vol.78
, pp. 052513
-
-
Perdew, J.P.1
Staroverov, V.N.2
Tao, J.3
Scuseria, G.E.4
-
40
-
-
34247403333
-
Strictly correlated electrons in density-functional theory: A general formulation with applications to spherical densities
-
DOI 10.1103/PhysRevA.75.042511
-
M. Seidl, P. Gori-Giorgi, and A. Savin, Phys. Rev. A 75, 042511 (2007). 10.1103/PhysRevA.75.042511 (Pubitemid 46633637)
-
(2007)
Physical Review A - Atomic, Molecular, and Optical Physics
, vol.75
, Issue.4
, pp. 042511
-
-
Seidl, M.1
Gori-Giorgi, P.2
Savin, A.3
-
43
-
-
33751341440
-
-
see also, 10.1103/PhysRevB.33.2481for an application to electronic systems.
-
see also S. M. Girvin, A. H. MacDonald, and P. M. Platzman, Phys. Rev. B 33, 2481 (1986) 10.1103/PhysRevB.33.2481
-
(1986)
Phys. Rev. B
, vol.33
, pp. 2481
-
-
Girvin, S.M.1
MacDonald, A.H.2
Platzman, P.M.3
-
44
-
-
77955575669
-
-
Alternatively, we could set V0 =0 and include the q=0 singularity in the structure factor: ρ2 (q) = n2 δ (q) +n [S (q) -1 ]
-
Alternatively, we could set V 0 = 0 and include the q = 0 singularity in the structure factor: ρ 2 (q) = n 2 δ (q) + n [S (q) - 1].
-
-
-
-
48
-
-
3242718844
-
-
10.1103/PhysRevLett.92.246401
-
M. Dion, H. Rydberg, E. Schroder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004). 10.1103/PhysRevLett.92.246401
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 246401
-
-
Dion, M.1
Rydberg, H.2
Schroder, E.3
Langreth, D.C.4
Lundqvist, B.I.5
-
49
-
-
13944281362
-
Soft cohesive forces
-
DOI 10.1002/qua.20314, Proceedings of the Tenth International Conference on the Applications of Density Functional Theory in Chemistry and Physics - Part I of II
-
J. F. Dobson, Jun Wang, B. P. Dinte, K. McLennan and H. M. Le, Int. J. Quantum Chem. 101, 579 (2005). 10.1002/qua.20314 (Pubitemid 40264534)
-
(2005)
International Journal of Quantum Chemistry
, vol.101
, Issue.5
, pp. 579-598
-
-
Dobson, J.F.1
Wang, J.2
Dinte, B.P.3
Mclennan, K.4
Hung, M.L.E.5
-
52
-
-
0003498504
-
-
7th ed. (Academic, London)
-
I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, 7th ed. (Academic, London, 2007).
-
(2007)
Tables of Integrals, Series, and Products
-
-
Gradshteyn, I.S.1
Ryzhik, I.M.2
|